NSAPI Programmer’s
Guide

IPlanet Web Server, Enterprise Edition

Version 4.1

March 2000

Copyright © 2000 Sun Microsystems, Inc. Some preexisting portions Copyright © 2000 Netscape Communications Corp. All
rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Javascript, iPlanet, and all Sun-, Java-, and iPlanet-based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. Netscape and the
Netscape N logo are registered trademarks of Netscape Communications Corporation in the U.S. and other countries. Other
Netscape logos, product names, and service names are also trademarks of Netscape Communications Corporation, which may
be registered in other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of the product or this document may be reproduced in any form by any means without prior written
authorization of the Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape FastTrack Server, Netscape ONE, SuiteSpot, and the
Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in the United States
and other countries. Other Netscape logos, product names, and service names are also trademarks of Netscape
Communications Corporation, which may be registered in other countries. Other product and brand names are trademarks of
their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

:l Recycled and Recyclable Paper

Documentation Team: Jocelyn Becker, Robert Fish, Ann Hillesland, Sanborn Hodgkins, Amanda Lee, Laila Millar, Alan
Morgenegg, and June Smith

Version 4.1
Printed in the United States of America. 00 99 98 543 2 1

ADOUL THIS BOOK ..ottt en e 9

Chapter 1 Basics of Server Operationccccvvvieiieniesecennnnns 11
CoNFIGUIALION FIIES ...t 12
MAGNUS.CONT .ottt ee e e esre e teeseeeneeans 12
ODJ.CONT e 12
MM EYPES oinveeiie ettt e e st e et e e er e e te e teesreeereeesteesaeesseesneeaneeenneenseens 13
How the Server Handles Requests from Clientscccoooieiiiieiiieeneciiene, 13
HTTP BASICS ovcviireiriiriiriseerecieere sttt 14
Steps in the Request Handling PrOCESScccooeiiieiiieiie e 15
Directives for Handling REQUESLSccvvvereiiiriecee e 16
Using NSAPI to Write New Server Application FUNCEiONScccccoveiiiennene 16
Chapter 2 Syntax and Use of obj.confcccccovviiiiniicce 19
Server Instructions in ObJ.CONT ..o 19
Summary of the DIF€CHIVEScecocviiiiie e 20
ODbject and CHENE TAQS ...eiiiiiieiiieiie ettt sttt seee e 23
B 41O] o 1ot A I Vo USSR 23
THE CHENE TAQG -eieetieitie ittt st be e b e e sbe e b nees 25
Flow of Control in 0bj.CONTcccoiiiie e 26
[T | ST OP PR TP UPPR PPN 26
AUINTIANS .o 27
NAMETIANS ettt e ettt e et be e sabe e e sabe e e sbee e e abeeesrneesareeens 27
PAtNCNECK ... 29
10 o] 1=Te1 i Y] o 1= U R TR PR 29
SEIVICE ottt 31
Ao (o [o o H SRS PRTPPRN 34
B OT e e 35
Syntax Rules for Editing 0bj.cONfccciiiiiii e 35
Order Of DIFECHIVESoviviiieieeeiier e s 35

Contents iii

T =10 4= (=] £ 36

€S SENSILIVILY ...veiieieitie ittt a e 36
R T=] o L 1o] T RTPRSPSR 36
(01U Lo (=1 SR SRP PP 36
SPIACES i ieeeeiteee ettt e ettt — et e ettt e e e e e s ae e e naeeanneeenneeens 37
Line CONLINUALIONocciiiiiii ettt e st e e s rre e sre e as 37
Path NAMIES ...oeciiic e sbae e srree e 37
(070] 1010 4 =T o | & T PSP TSTPRR PP PTRTR 37

Chapter 3 Predefined SAFs and the Request Handling Process ..39

LTS 7 o 1= RS 41
AULNTIANS STAGE ...eiiuiieiieiie ettt sttt ettt b et esae e sbeesnae e e 61
N Eo T[N I = L T - Vo S 65
PatNCheCK StAgEoccuiiiiiiiie e e 72
(@ o1 Tot Y o TS] = To [85
TS QYo - o [T OO ORI 89
FaXo (o oo IS - Vo T TS 104
g o] 1 1= T [T U O U PO TP UUPPTUUPPOTPN 107
Chapter 4 Creating Custom SAFScccooviiiiiiiicee e 109
The SAF INEEITACEeoiiiiiie e e e 110
SAF PAAMETEISeiiiieiie ittt ettt sr et sr et sr et neesnnen 110
pb (parameter BIOCK)oooiiiiiiiiii e 110
R I (=TI) OSSR 111
[0 (=10 [0 1=2S]) USRS UR PR 111
RESUIL COUBS ..ttt ettt e 113
Creating and UsiNg CUSLOM SAFScooiiiiiiiiiieeieeiee et 114
Write the SOUICE COUEccoiiiiiiiciee e e 115
ComMPIle AN LINK .ooviiiieecie e e 116
Load and Initialize the SAF ... 117
Instruct the Server to Call the SAFScoiiiiiiiiie e 118
Stop and Start the SEIVEToocve i 120
TESE e SAF e 120
Overview of NSAPI C FUNCLIONSccoiiiiieiiiieieniceie e 120
Parameter Block Manipulation ROULINESccccoiiiieiiiiiiiii e 121

iv. NSAPI Programmer’s Guide

Protocol Utilities fOr SErVICE SAFSoiivceiie e 122

MemOory ManagemEeNTcooiiiiiiiie et 122
FHE 17O et e 123
NEIWOIK 17O et 123
TRIEAAS ..o e 123
UBHIITIES ettt ettt e 124
Required Behavior of SAFs for Each DireCtiveccceveeiiiiiiniiniieieeiiee 124
INIE SAFS ettt renreen 125
AULNTTANS SAFS ..ottt st se et st ee e sbe e sbeesaeeneeeans 125
NAMETIANS SAFS .ot 126
PatNCheCK SAFS ... s 126
ODBJECITYPE SAFS ..ot ctee sttt ettt eree e sre e sraeaneeeraeenneenres 127
SEIVICE SAFS .ottt et bbb e 127
EITOr SAFS s 127
AAALOG SAFS ittt sttt sttt re e nre e 128
CGI t0 NSAPI CONVEISION ...cviiviiiiiiieie it steetee sttt siee e 128
Chapter 5 NSAPI Function Reference ..., 131
NSAPI Functions (in Alphabetical Order)ccccoevieiieevinsiie e 131
Chapter 6 Examples of Custom SAFS ..., 189
Examples in the BUildccooieiiii s 190
AULNTTaNS EXAMPIE ..o 191
Installing the EXaMPIEoccvveieie e 191
SOUICE COOER ..ttt ettt bbb e bt e e 192
NameTrans EXAMPIEcccveiiiiiiiice st sre e 193
Installing the EXamMPIEccooiiiii e e 195
SOUICE COOER .ottt bbb bbb 195
PathCheck EXamPIEoocuoiiiii e s 196
Installing the EXaMPIEocovveieeieie e 196
SOUICE COOER ...ttt ettt bbb e et sbe e e 197
ODbjJeCtTYPE EXAMPIE ..c.eeeciieeie et e 199
Installing the EXamMPIEccooiiiie e e 200
SOUICE COOE ..ottt bbb bbb 200

Contents v

SEIVICE EXAMPIE ..viieie ettt 202

Installing the EXamMPIEooiiiiii e s 202
SOUICE COE ... 202
More Complex Service EXample ..o 204
AdALOG EXAMPIE .o 204
Installing the EXamMPIEooiiiiiii e 205
SOUICE COOER ...ttt ettt bttt e sb e et sie e enbeeae s 205

vi NSAPI Programmer’s Guide

Appendix A Data Structure Reference ... ieeiennns 207

Privatization of Some Data StrUCLUIEScocoeeiiiiiiiiiiiiiie e 208
TIPSR PRSPPI 208
PBIOCK .ttt 209
01 0 =1 1Y S 209
PD_PAIAIM ettt bbb snae s 209
SESSION-SCHENT ..ot et b e 210
1= T0 1Y SR 210
12 L TP UPT RO UPPTP 211
SHIMEBIM S e 211
CINTO ettt 211
Appendix B Variables in magnus.conf ..., 213
Server INFOrMAtIONc.ooiiiiii b 214
Object Configuration Filecoooveiieiie i 217
LANQUAGE ISSUBS ...ttt ettt ettt ettt et e b e e ene e e sre e e e 218
DINS LOOKUD .veiitiieiiieitie sttt ettt et ste e st e te st estae s e e te e saeentaesraneneeesreestaesneeanennns 220
Threads, Processes and CONNECLIONSc.cccueerieiieniinii e 220
Native Thread POOIS ... e 224
01 TP URPRTPRRRN 225
Error Logging and Statistic COllectioncccocvvviviiivivecse e 226
O SR 228
K=o | 1/ 229
Chunked ENCOOINGcoiiiiiiiiieiie et 233
MISCEIIANEOUS ...ttt 234
APPENIX C MIME TYPES oottt 235
INEFOAUCTION ..ttt b e neas 235
Loading the MIME TYPES Filecoiiiiiiiiiieieee e 236
Determining the MIME TYPE ..oooveiiiie ettt 236
How the Type Affects the RESPONSEccoiiiiiiiiiiiii e 237
What Does the Client Do with the MIME TYPE? ..cccvvvvvvviveiree e 238
Syntax of the MIME Types File ..ot 238
Sample MIME TYPES Fil€ ..ovoveiieieeeee et 239

Contents vii

Appendix D Wildcard Patterns ... 241

WilACArd PAIEINSviiieiiie ettt 241
Wildcard EXAMPIES ...occvveiieiieceee et 242
AppendixX E Time FOrmats ...t 245
Appendix F Server-Parsed HTML Tagsc.ococovevivvivceiiscsce e 247
Using Server-Parsed COmMMAaNdScccoeiieiiiiiieiie e 247
(ol0] 01 1T RPN 248
INCIUGE oot ettt e b 249
<Tod s [o T RPN 249
FSIZE it 249
FIASIMOA .o e 250
EXEC tteriteite etttk bt E e R R e e R et R e R e Rt e nR e e re et nars 250
Environment Variables in Commandsc.cccooeeiiiiiiiiiieeeee e 250
Appendix G HyperText Transfer Protocol ..., 253
COMPLIANCE ..ttt st ee et aeesneens 254
REQUESES .eiiei ettt et e et e e es e e st e e steeeete e e s aeeentneeenteeenteeennnneans 254
Request Method, URI, and Protocol Versioncccccceiiiiicneenieieeenn 254
o o U= =T Vo L= PR 255
REQUESE DALAveietiee ettt ettt ettt sb e be e r e e nnneaen 255
STy 0] 1= T O 255
HTTP Protocol Version, Status Code, and Reason Phraseccccceeeeee. 256
RESPONSE HEAUBISc.veeveececeiii sttt sne e nrae e 257
RESPONSE DALAccvviiiiiiiiiiiie ettt ettt 257
BUFfEred SIFEAIMSoviieiieiiiire e e 258

Appendix | Alphabetical List of Directives in magnus.conf 267
Appendix J Alphabetical List of Pre-defined SAFsccccceen..... 271
FNAEX ettt 275

viii NSAPI Programmer’s Guide

About This Book

This book was last updated 3/1/00.

This book discusses how to use Netscape Server Application Programmer’s
Interface (NSAPI) to build plugins that define Server Application Functions
(SAFs) to extend and modify the Enterprise Server 3.x versions and iPlanet™
Web Server 4.x versions. The book also discusses the purpose and use of the
configuration files obj . conf, magnus. conf, and ni ne. t ypes, and provides
comprehensive lists of the directives and functions that can be used in these
configuration files. It also provides a reference of the NSAPI functions you can
use to define new plugins.

This book has the following chapters and appendices:

Chapter 1, “Basics of Server Operation.”

This chapter discusses how the iPlanet Web Server uses configuration files
to perform initialization tasks and to process client requests.

Chapter 2, “Syntax and Use of obj.conf.”

This chapter goes into detail on the configuration file obj . conf. The
chapter discusses the syntax and use of directives in this file, which instruct
the server how to process requests.

Chapter 3, “Predefined SAFs and the Request Handling Process.”

This chapter discusses each of the stages in the request handling process,
and provides an API reference of the Server Application Functions (SAFs)
that can be invoked at each stage.

Chapter 4, “Creating Custom SAFs.”

This chapter discusses how to create your own plugins that define new
SAFs to modify or extend the way the server handles requests.

Chapter 5, “NSAPI Function Reference.”

This chapter presents a reference of the functions in the Netscape Server
Application Programming Interface (API). You use NSAPI functions to
define SAFs.

Chapter 6, “Examples of Custom SAFs.”

This chapter discusses examples of custom SAFs to use at each stage in the
request handling process.

About This Book 9

Appendix A, “Data Structure Reference.”
This appendix discusses some of the commonly used NSAPI data structures.

Appendix B, “Variables in magnus.conf.”

This appendix discusses the variables you can set in the configuration file
magnus. conf to configure the iPlanet Web Server during initialization.
Appendix C, “MIME Types.”

This appendix discusses the MIME types file, which maps file extensions to
file types.

Appendix D, “Wildcard Patterns.”

This appendix lists the wildcard patterns you can use when specifying
values in obj . conf, various predefined SAFs, and in some NSAPI functions.
Appendix E, “Time Formats.”

This appendix lists time formats.

Appendix F, “Server-Parsed HTML Tags.”
This appendix discusses the syntax and use of server-parsed HTML tags.

Appendix G, “HyperText Transfer Protocol.”
This appendix gives an overview of HTTP.
Appendix H, “Alphabetical List of NSAPI Functions and Macros,”

Appendix I, “Alphabetical List of Directives in magnus.conf,”
Appendix J, “Alphabetical List of Pre-defined SAFs.”

These appendices provide alphabetical lists for easy lookup of NSAPI
functions, predefined SAFs, and variables in magnus. conf.

Note Throughout this manual, all Unix-specific descriptions apply to the Linux
operating system as well, except where Linux is specifically mentioned.

10 NSAPI Programmer’s Guide

Chapter

Basics of Server Operation

The configuration and behavior of iPlanet Web Server 4.x is determined by a
set of configuration files. You can change the settings in these configuration
files either by using the Server Manager interface or by manually editing the
files.

The configuration file that contains instructions for how the server processes
requests from clients is called obj . conf. You can modify and extend the
request handling process by adding or changing the instructions in obj . conf.
You can use the Netscape Server Application Programming Interface (API) to
create new Server Application Functions (SAFs) to use in instructions in

obj . conf.

This chapter discusses the configuration files used by the iPlanet Web Server.
Then the chapter looks in more detail at the server’s process for handling
requests. The chapter closes by introducing the use of Netscape Server
Application Programming Interface (NSAPI) to define new functions to modify
the request-handling process.

This chapter has the following sections:

= Configuration Files

< How the Server Handles Requests from Clients

= Using NSAPI to Write New Server Application Functions

Chapter 1, Basics of Server Operation 11

Configuration Files

Configuration Files

The configuration and operation of the iPlanet Web Server is controlled by
configuration files. The configuration files reside in the directory ser ver -
root/ server-id config/. This directory contains various configuration files
for controlling different components, such as j sa. conf for configuring server-
side JavaScript and net shar e. conf for configuring NetShare. The exact
number and names of configuration files depends on which components have
been enabled or loaded into the server.

However, this directory always contains three configuration files that are

essential for the server to operate. These files are:

< nmagnus. conf -- contains server initialization information.

= obj.conf --contains instructions for handling requests from clients.

= nine.types -- contains information for determining the content type of
requested resources.

magnus.conf

This file sets values of variables that configure the server during initialization.
The server looks at this file and executes the settings on startup. The server
does not look at this file again until it is restarted.

See Appendix B, “Variables in magnus.conf,” for a list of all the variables that
can be set in magnus. conf .

obj.conf

This file contains additional initialization information, and also contains
instructions for the server about how to process requests from clients (such as
browsers). The server looks at this file every time it processes a request from a
client.

The obj . conf file is essential to the operation of the iPlanet Web Server. When
you make changes to the server through the Server Manager interface, the
system automatically updates obj . conf .

12 NSAPI Programmer’s Guide

How the Server Handles Requests from Clients

The file obj . conf contains a series of instructions (directives) that tell the
iPlanet Web Server what to do at each stage in the request-response process.
Each directive invokes a Server Application Function (SAF). These functions are
written using the Netscape Server Application Programming Interface (NSAPI).
The iPlanet Web Server comes with a set of pre-defined SAFs, but you can also
write your own using NSAPI to create new instructions that modify the way the
server handles requests.

For more information about how the server uses obj . conf, see Chapter 2,
“Syntax and Use of obj.conf.”

mime.types

This file maps file extensions to MIME types to enable the server to determine
the content type of a requested resource. For example, requests for resources

with .ht ml extensions indicate that the client is requesting an HTML file, while
requests for resources with . gi f extensions indicate that the client is requesting
an image file in GIF format.

The server loads the ni ne. t ypes file when it starts up. If you make changes to
this file, you must restart the server before the changes will take effect.

For more information about how the server uses ni me. t ypes, see Appendix C,
“MIME Types.”

How the Server Handles Requests from
Clients

iPlanet Web Server is a web server that accepts and responds to HyperText
Transfer Protocol (HTTP) requests. Browsers like Netscape Communicator
communicate using several protocols including HTTP, FTP, and gopher. The
iPlanet Web Server handles HTTP specifically.

For more information about the HTTP protocol refer to Appendix G,
“HyperText Transfer Protocol,” and also the latest HTTP specification.

Chapter 1, Basics of Server Operation 13

How the Server Handles Requests from Clients

HTTP Basics

As a quick summary, the HTTP protocol works as follows:

= the client (usually a browser) opens a connection to the server and sends a
request

= the server processes the request, generates a response, and closes the
connection (or leaves the connection open and waits for another request if
it finds a Connecti on: Keep-al i ve header.)

The request consists of a line indicating a method such as GET or PCST, a
Universal Resource Identifier (URI) indicating which resource is being
requested, and an HTTP protocol version separated by spaces.

This is normally followed by a number of headers, a blank line indicating the
end of the headers, and sometimes body data. Headers may provide various
information about the request or the client Body data. Headers are typically
only sent for POST and PUT methods.

The example request shown below would be sent by a Netscape browser to
request the server to send back the resource in /i ndex. ht nl . In this example,
no body data is sent because the method is GET (the point of the request is to
get some data, not to send it.)

CGET /index.htm HTTP/ 1.0
User-agent: Mzilla
Accept: text/htm, text/plain, inmage/jpeg, image/gif, */*

The server receives the request and processes it. It handles each request
individually, although it may process many requests simultaneously. Each
request is broken down into a series of steps that together make up the request
handling process.

The server generates a response which includes the HTTP protocol version,
HTTP status code, and a reason phrase separated by spaces. This is normally
followed by a number of headers. The end of the headers is indicated by a
blank line. The body data of the response follows. A typical HTTP response
might look like this:

HTTP/ 1.0 200 K

Server: iPlanet Web Server/4.1
Content-type: text/htm

Content -1 ength: 83

14 NSAPI Programmer’s Guide

How the Server Handles Requests from Clients

<HTM.>

<HEAD><TI TLE>Hel | o Wor | d</ Ti t| e></ HEAD>
<BODY>Hel | o Wor | d</ BODY>

</ HTML>

The status code and reason phrase tell the client how the server handled the
request. Normally the status code 200 is returned indicating that the request
was handled successfully and the body data contains the requested item. Other
result codes indicate redirection to another server or the browser’s cache, or
various types of HTTP errors such as “404 Not Found.”

Steps in the Request Handling Process

When the server first starts up it performs some initialization and then waits for
an HTTP request from a client (such as a browser). When it receives a request,
it handles it in the following steps:

1. AuthTrans (authorization translation)

verify any authorization information (such as name and password) sent in
the request.

2. NameTrans (name translation)
translate the logical URI into a local file system path.
3. PathCheck (path checking)

check the local file system path for validity and check that the requestor has
access privileges to the requested resource on the file system.

4. ObjectType (object typing)

determine the MIME-type (Multi-purpose Internet Mail Encoding) of the
requested resource (for example. text/htm , i mage/ gi f, and so on).

5. Service (generate the response)
generate and return the response to the client.
6. AddLog (adding log entries)

add entries to log file(s).

Chapter 1, Basics of Server Operation 15

Using NSAPI to Write New Server Application Functions

7. Error (service)

This step is executed only if an error occurs in the previous steps. If an
error occurs, the server logs an error message and aborts the process.

Directives for Handling Requests

The file obj . conf contains a series of instructions, known as directives, that tell
the iPlanet Web Server what to do at each stage in the request handling
process. Each directive invokes a Server Application Function (SAF) with one or
more arguments. Each directive applies either to initialization or to a specific
stage in the request handling process. The stages are I ni t, Aut hTr ans,
NameTr ans, Pat hCheck, Obj ect Type, Servi ce, and AddLog.

For example, the following directive applies during the NaneTr ans stage. It
calls the docunent - r oot function with the r oot argument set to D: /

Net scape/ Ser ver 4/ docs. (The docunent -root function translates the
http://server_nanel/ part of the URL to the document root, which in this
example is D: / Net scape/ Ser ver 4/ docs.)

NameTr ans fn="docunent-root" root="D:/Netscape/ Server4/docs"

The functions invoked by the directives in obj . conf are known as Server
Application Functions (SAFs).

Using NSAPI to Write New Server
Application Functions

The iPlanet Web Server comes with a variety of pre-defined SAFs that you can
use to create more directives in obj . conf. You can also write your own SAF
using the functions provided by the NSAPI. After you write the SAF, you would
add a directive to obj . conf so that your new function gets invoked by the
server at the appropriate time.

Each SAF has its own arguments, which are passed to it by the directive in
obj . conf. Every SAF is also passed additional arguments that contain
information about the request (such as what resource was requested and what

16 NSAPI Programmer’s Guide

Using NSAPI to Write New Server Application Functions

kind of client requested it) and any other server variables created or modified
by SAFs called by previously invoked directives. Each SAF may examine,
modify, or create server variables.

Each SAF returns a result code which tells the server whether it succeeded, did
nothing, or failed.

For more information about obj . conf, see Chapter 2, “Syntax and Use of
obj.conf.”

For more information on the pre-defined SAFs, see Chapter 3, “Predefined SAFs
and the Request Handling Process.”

For more information on writing your own SAFs, see Chapter 4, “Creating
Custom SAFs.”

Chapter 1, Basics of Server Operation 17

Using NSAPI to Write New Server Application Functions

18 NSAPI Programmer’s Guide

Chapter

Syntax and Use of obj.conf

The obj . conf configuration file contains directives that instruct the iPlanet
Web Server how to handle requests from clients. This chapter discusses server
instructions in obj . conf ; the use of OBJECT and CLI ENT tags; the flow of
control in obj . conf ; and the syntax rules for editing obj . conf .

The sections in this chapter are:

= Server Instructions in obj.conf

< Object and Client Tags

= Flow of Control in obj.conf

= Syntax Rules for Editing obj.conf

Server Instructions in obj.conf

The obj . conf file contains two kinds of directives:

= directives that initialize the iPlanet Web Server. These directives appear at
the start of the file, and are not embedded inside OBJECT tags.

= directives that instruct the server how to handle requests received from
clients such as browser. These directives appear inside OBJECT tags.

Each directive calls a function, indicating when to call it and specifying
arguments for it.

Chapter 2, Syntax and Use of obj.conf 19

Server Instructions in obj.conf

The syntax of each directive is:

Directive fn=func-nane nanmel="val uel". .. naneN="val ueN'

For example:

NameTrans fn="docunent-root" root="D:/Netscape/ Server4/docs"

Di recti ve indicates when this instruction is executed, which is either during

server initialization or during a step in the request handling process. If it is to

be executed during server initialization, the value is I ni t . Otherwise the value
is one of Aut hTr ans, NaneTr ans, Pat hCheck, Obj ect Type, Servi ce, Error,
and AddLog.

The value of the f n argument is the name of the Server Application Function to
execute. All directives must supply a value for the f n parameter -- if there’s no
function, the instruction won't do anything.

The remaining parameters are the arguments needed by the function, and they
vary from function to function.

iPlanet Web Server is shipped with a set of built-in server application functions
(SAFs) such as | oad-t ypes, basi c- aut h, and so on, that you can use to create
and modify directives in obj . conf . You can also define new SAFs, as discussed
in Chapter 4, “Creating Custom SAFs.”

Summary of the Directives

Here are the categories of server directives and a description of what each
does. Each category corresponds to a stage in the request handling process
(except for the Init category which corresponds to the server initialization
stage).The section “Flow of Control in obj.conf” explains exactly how the server
decides which directive or directives to execute in at each stage.

e Init
Initializes server subsystems and shared resources. For example:
Init fn="1oad-types" mine-types="m ne.types"
This example calls the function | oad-t ypes to load the file mi me. t ypes,
which the server will use for looking up MIME types.

* AuthTrans

20 NSAPI Programmer’s Guide

Server Instructions in obj.conf

Verifies any authorization information (normally sent in the Authorization
header) provided in the HTTP request and translates it into a user and/or a
group. Server access control occurs in two stages. AuthTrans verifies the
authenticity of the user. Later, PathCheck tests the user’s access privileges
for the requested resource.

Aut hTrans fn=basi c-auth userfn=ntauth auth-type=basic
user db=none

This example calls the basi c- aut h function, which calls a custom function
(in this case nt aut h, to verify authorization information sent by the client.
The Authorization header is sent as part of the basic server authorization
scheme.

NameTrans

Translates the URL specified in the request from a logical URL to a physical
file system path for the requested resource. This may also result in
redirection to another site. For example:

NameTrans fn="docunent-root" root="D:/Netscape/ Server 4/ docs"

This example calls the docurment - r oot function with a r oot argument of
D: / Net scape/ Ser ver 4/ docs. The function docunent - r oot function
translates the http: // server_nanel part of the requested to URL to the
document root, which in this case is D: / Net scape/ Ser ver 4/ docs. Thus a
request for http: // server - name/ docl. htnl is translated to D: /

Net scape/ Server 4/ docs/ docl. htm .

PathCheck

Performs tests on the physical path determined by the NameTr ans step. In
general, these tests determine whether the path is valid and whether the
client is allowed to access the requested resource. For example:

Pat hCheck fn="find-index" index-nanes="index.htm , hone.htm"

This example calls the fi nd-i ndex function with an i ndex- nanmes
argument of i ndex. ht nl , horme. ht m . If the requested URL is a directory,
this function instructs the server to look for a file called either i ndex. ht m
or hone. ht nl in the requested directory.

ObjectType

Determines the MIME (Multi-purpose Internet Mail Encoding) type of the
requested resource. The MIME type has attributes t ype (which indicates
content type), encodi ng and | anguage. The MIME type is sent in the
headers of the response to the client. The MIME type also helps determine
which Ser vi ce directive the server should execute.

Chapter 2, Syntax and Use of obj.conf 21

Server Instructions in obj.conf

22 NSAPI Programmer’s Guide

The resulting type may be:

< A common document type such as text/htm orimage/gif (for
example, the file name extension . gi f translates to the MIME type

i mage/ gi f).

= An internal server type. Internal types always begin with nagnus-
i nternal .

For example:

oj ect Type fn="type- by-extension"
This example calls the t ype- by- ext ensi on function which causes the

server to determine the MIME type according to the requested resource’s
file extension.

Service

Generates and sends the response to the client. This involves setting the
HTTP result status, setting up response headers (such as content-type and
content-length), and generating and sending the response data. The default
response is to invoke the send-fi | e function to send the contents of the
requested file along with the appropriate header files to the client.

The default Servi ce directive is:
Servi ce net hod="(GET| HEAD| POST) " type="*~nmagnus-i nternal /*"
fn="send-file"

This directive instructs the server to call the send- fi | e function in
response to any request whose method is GET, HEAD, or POST, and whose
t ype does not begin with magnus-i nt er nal /. (Note the use of the special
characters * ~ to mean “does not match.”)

Another example is:
Servi ce met hod="(GET| HEAD) " type="magnus-i nternal /i magemap"
f n="i magemap"

In this case, if the method of the request is either GET or HEAD, and the type
of the requested resource is " magnus- i nt er nal /i magenap", the function
i mgenmap is called.

AddLog

Adds an entry to a log file to record information about the transaction. For
example:

AddLog fn="flex-Io0g" nane="access"

Obiject and Client Tags

This example calls the f1 ex-1 og function to log information about the
current request in the log file named access.

e Error

Handles an HTTP error. This directive is invoked if a previous directive
results in an error. Typically the server handles an error by sending a
custom HTML document to the user describing the problem and possible
solutions.

For example:
Error fn="send-error" reason="Unaut horized"
pat h="D: / net scape/ server 4/ error s/ unaut hori zed. ht m "

In this example, the server sends the file in D: / net scape/ ser ver 4/
errors/unaut hori zed. ht i whenever a client requests a resource that it
is not authorized to access.

Object and Client Tags

This section discusses the use of Obj ect and C i ent tags in the file obj . conf.
bj ect tags group together directives that apply to requests for particular
resources, while i ent tags group together directives that apply to requests
received from particular clients.

= The Object Tag

« The Client Tag

The Object Tag

Directives in the obj . conf file are grouped into objects that begin with an
<(hj ect > tag and end with a </ bj ect > tag. The default object provides
instructions to the server about how to process requests by default. Each new
object modifies the default object’s behavior.

An bj ect tag may have a nane attribute or a ppat h attribute. Either parameter
may be a wildcard pattern. For example:
<Cbj ect name="cgi ">

or
<bj ect ppat h="/usr/ net scape/ server 4/ docs/private/*">

Chapter 2, Syntax and Use of obj.conf 23

Obiject and Client Tags

The server always starts handling a request by processing the directives in the
default object. However, the server switches to processing directives in another
object after the NameTr ans stage of the default object if either of the following
conditions is true:

= The successful NaneTr ans directive specifies a name argument

= the physical pathname that results from the NameTr ans stage matches the
ppat h attribute of another object

When the server has been alerted to use an object other than the default object,
it processes the directives in the other object before processing the directives in
the default object. For some steps in the process, the server stops processing
directives in that a particular stage (such as the Ser vi ce stage) as soon as one
is successfully executed, whereas for other stages the server processes all
directives in that stage, including the ones in the default object as well as those
in the additional object. For more details, see the section “Flow of Control in
obj.conf.”

Objects that Use the Name Attribute

If a NameTr ans directive in the default object specifies a name argument, the
server switches to processing the directives in the object of that name before
processing the remaining directives in the default object.

For example, the following NanmeTr ans directive in the default object assigns
the name cgi to any request whose URL starts with htt p: // ser ver_nane/
cgi/.

<bj ect nanme="defaul t">

NameTrans fn="pfx2dir" from="/cgi" dir="D:/netscape/server4/docs/nycgi"
name="cgi "

</ d)j ect>
When that NameTr ans directive is executed, the server starts processing
directives in the object named cgi :

<bj ect nanme="cgi ">
nmore directives. ..
</ Cbj ect >

24 NSAPI Programmer’s Guide

Obiject and Client Tags

Object that Use the Ppath Attribute

When the server finishes processing the NaneTr ans directives in the default
object, the logical URL of the request will have been converted to a physical
pathname. If this physical pathname matches the ppat h attribute of another
object in obj . conf, the server switches to processing the directives in that
object before processing the remaining ones in the default object.

For example, the following NaneTr ans directive translates the htt p: //
server_nanel part of the requested URL to D: / Net scape/ Ser ver 4/ docs/
(which is the document root directory).

<bj ect nanme="defaul t">
NarreTr ans f n="docunent -root" root="D:/ Net scape/ Server 4/ docs"

</ Cbj ect >

The URL http:// server_nanelinternal pl anl. ht M would be translated
to D: / Net scape/ Ser ver 4/ docs/ i nt er nal pl anl. ht M . However, suppose
that obj . conf contains the following additional object:

<bj ect ppath="*internal *">

nmore directives...
</ Cbj ect >

In this case, the partial path *i nt er nal * matches the path D: / Net scape/
Server 4/ docs/ i nternal pl anl. ht M . So now the server starts processing the
directives in this object before processing the remaining directives in the default
object.

The Client Tag

The < i ent > tag may be used within an object to limit a group of directives to
requests received from specific clients. Directives between a <d i ent > tag and
a matching </ i ent > tag are executed only if the client’s information matches
the <d i ent > parameters.

A <d i ent > tag may have parameters for i p, dns, and/or host . The value of
these parameters are wildcard patterns. For example:
<dient ip="198.95.251.*">

or
<Client dns="*.netscape.conl>

Chapter 2, Syntax and Use of obj.conf 25

Flow of Control in obj.conf

The directives in the < i ent > block are only executed if the client that sent
the current request matches all the parameters.

The i p parameter is the IP address of the client. The dns parameter is the DNS
name of the client.

The host parameter is typically used to configure software virtual servers.
These are multiple “virtual” servers on the same machine. There is really only
one web server running on the machine, but there may be many DNS names
which map to the machines IP address. The web server can tell which virtual
server was requested because clients such as Netscape browsers includes a
Host header in the request which tells the DNS name of the server that the user
requested.

Flow of Control in obj.conf

This section discusses how the server decides which directives to execute in
obj . conf.

Init

When the iPlanet Web Server starts up, it executes the variable settings defined
in magnus. conf, then executes the I ni t directives in obj . conf. The I ni t
section contains directives that initialize the server, such as loading and
initializing additional modules and plugins, and initializing log files.

The server executes all the directives in the | ni t section.

The I ni t section should always contain a directive that invokes the | oad-

t ypes function. This function loads the MIME types file that the server uses to
create a table that maps file extensions to MIME types. The file is usually called
mi ne. t ypes. We don’t recommend that you change the name of the MIME
types file since most people expect it to be called ni me. t ypes. The following
directive loads the MIME types file:

Init fn="1oad-types" m me-types="m nme.types"

26 NSAPI Programmer’s Guide

Flow of Control in obj.conf

The most common way that the server determines the MIME type of a
requested resource is by invoking the t ype- by- ext ensi on directive in the
Obj ect Type section of obj . conf. This function will not work if the MIME
types file has not been loaded.

AuthTrans

When the server receives a request, it executes the Aut hTr ans directives in the
default object to check that the client is authorized to access the server.

If there is more than one AuthTrans directive, the server executes them all
(unless one of them results in an error). If an error occurs, the server skips all
other directives except for Error directives.

NameTrans

Next, the server executes a NaneTr ans directive in the default object to map
the logical URL of the requested resource to a physical pathname on the
server’s file system. The server looks at each NameTr ans directive in the default
object in turn, until it finds one that can be applied.

If there is more than one NanmeTr ans directive in the default object, the server
considers each directive until one succeeds.

The NaneTr ans section in the default object must contain exactly one directive
that invokes the docunent - r oot function. This functions translates the htt p: /
| server_nanel part of the requested URL to a physical directory that has
been designated as the server’'s document root. For example:

NameTr ans fn="docunent-root" root="D:/Netscape/ Server4/docs"

The directive that invokes document - r oot must be the last directive in the
NameTr ans section so that it is executed if no other NaneTr ans directive is
applicable.

The pf x2di r (prefix to directory) function is used to set up additional
mappings between URLs and directories. For example, the following directive
translates the URL http:// server_nanel/ cgi/ into the directory pathname
D: / net scape/ server 4/ docs/ nycgi / :

NameTrans fn="pfx2dir" fronm="/cgi" dir="D:/netscape/server4/docs/ nycgi"

Chapter 2, Syntax and Use of obj.conf 27

Flow of Control in obj.conf

Notice that if this directive appeared after the one that calls docunent - r oot , it
would never be executed, with the result that the resultant directory pathname
would be D: / net scape/ server 4/ docs/ cgi / (not mycgi). This illustrates why the
directive that invokes docunent - r oot must be the last one in the NaneTr ans
section.

How the Server Knows to Process Other Objects

As a result of executing a NaneTr ans directive, the server might start processing
directives in another object. This happens if the NaneTr ans directive that was
successfully executed specifies a name or generates a partial path that matches
the name or ppat h attribute of another object.

If the successful NameTr ans directive assigns a name by specifying a nane
argument, the server starts processing directives in the named object (defined
with the OBJECT tag) before processing directives in the default object for the
rest of the request handling process.

For example, the following NanmeTr ans directive in the default object assigns
the name cgi to any request whose URL starts with http: // server_nane/
cgil.

<pj ect nane="default">

NameTrans fn="pfx2dir" from="/cgi" dir="D:/netscape/server4/docs/nycgi"
name="cgi "

</ d)j ect>
When that NameTr ans directive is executed, the server starts processing
directives in the object named cgi :

<bj ect nane="cgi ">
nmore directives. ..
</ Cbj ect >

When a NameTr ans directive has been successfully executed, there will be a
physical pathname associated with the requested resource. If the resultant
pathname matches the ppat h (partial path) attribute of another object, the
server starts processing directives in the other object before processing
directives in the default object for the rest of the request handling process.

For example, suppose obj . conf contains an object as follows:

<bj ect ppath="*internal *">
nore directives. ..

28 NSAPI Programmer’s Guide

Flow of Control in obj.conf

</ Cbj ect >

Now suppose the successful NameTr ans directive translates the requested URL
to the pathname D: / Net scape/ Ser ver 4/ docs/ i nt er nal pl anl. ht ni . In this
case, the partial path *i nt er nal * matches the path D: / Net scape/ Ser ver 4/
docs/internal pl anl. ht M . So now the server would start processing the
directives in this object before processing the remaining directives in the default
object.

PathCheck

After converting the logical URL of the requested resource to a physical
pathname in the NameTr ans step, the server executes Pat hCheck directives to
verify that the client is allowed to access the requested resource.

If there is more than one Pat hCheck directive, the server executes all the
directives in the order in which they appear, unless one of the directives denies
access. If access is denied, the server switches to executing directives in the
Error section.

If the NameTr ans directive assigned a name or generated a physical pathname
that matches the name or ppat h attribute of another object, the server first
applies the Pat hCheck directives in the matching object before applying the
directives in the default object.

ObjectType

Assuming that the Pat hCheck directives all approve access, the server next
executes the oj ect Type directives to determine the MIME type of the request.
The MIME type has three attributes: type, encoding, and language. When the
server sends the response to the client, the type, language, and encoding values
are transmitted in the headers of the response. The t ype also frequently helps
the server to determine which Ser vi ce directive to execute to generate the
response to the client.

If there is more than one Obj ect Type directive, the server applies all the
directives in the order in which they appear. However, once a directive sets an
attribute of the MIME type, further attempts to set the same attribute are

Chapter 2, Syntax and Use of obj.conf 29

Flow of Control in obj.conf

ignored. The reason that all Qbj ect Type directives are applied is that one
directive may set one attribute, for example t ype, while another directive sets a
different attribute, such as | anguage.

As with the Pat hCheck directives, if another object has been matched to the
request as a result of the NaneTr ans step, the server executes the Qbj ect Type
directives in the matching object before executing the (oj ect Type directives in
the default object.

Setting the Type By File Extension

Usually the default way the server figures out the MIME type is by calling the
t ype- by- ext ensi on function. This function instructs the server to look up the
MIME type according to the requested resource’s file extension in the MIME
types table. This table was created during the I ni t stage by the | oad- ni ne-

t ypes function, which loads the MIME types file, (which is usually called

nm me. types).

For example, the entry in the MIME types table for the extensions . ht
and. ht mis usually:

type=text/htm exts=htm htm

which says that all files that have the extension . ht mor .ht M are text files
formatted as HTML and the t ype istext/htni .

Note that since the server creates the MIME types table during initialization, if
you make changes to the MIME types file, you must restart the server before
those changes can take effect.

For more information about MIME types, see Appendix C, “MIME Types.”

Forcing the Type

If no previous Qbj ect Type directive has set the type, and the server does not
find a matching file extension in the M ME types table, the t ype still has no
value even after t ype- by- expr essi on has been executed. Usually if the server
does not recognize the file extension, it is a good idea to force the type to be
t ext/ pl ai n, so that the content of the resource is treated as plain text. There
are also other situations where you might want to set the type regardless of the
file extension, such as forcing all resources in the designated CGI directory to
have the MIME type magnus-i nternal / cgi .

30 NSAPI Programmer’s Guide

Flow of Control in obj.conf

The function that forces the type is f or ce- t ype.

For example, the following directives first instruct the server to look in the
MIME types table for the MIME type, then if the t ype attribute has not been set
(that is, the file extension was not found in the MIME types table), set the t ype
attribute to t ext/ pl ai n.

bj ect Type fn="type-by-extension"
bj ect Type fn="force-type" type="text/plain"

If the server receives a request for a file abc. dogs, it looks in the MIME types
table, does not find a mapping for the extension . dogs, and consequently does
not set the t ype attribute. Since the t ype attribute has not already been set, the
second directive is successful, forcing the t ype attribute to t ext / pl ai n.

The following example illustrates another use of f or ce-t ype. In this example,
the t ype is forced to magnus-i nt er nal / cgi before the server gets a chance to
look in the MIME types table. In this case, all requests for resources in htt p: //
server_nanel cgi/ are translated into requests for resources in the directory
D: / net scape/ ser ver 4/ docs/ nycgi / . Since a name is assigned to the request, the
server processes Qbj ect Type directives in the object named cgi before
processing the ones in the default object. This object has one (bj ect Type
directive, which forces the t ype to be magnus-i nternal / cgi .

NameTrans fn="pfx2dir" from="/cgi" dir="D:/netscape/server4/docs/nycgi"
name="cgi "

<bj ect nanme="cgi ">

bj ect Type fn="force-type" type="magnus-internal/cgi"

Service fn="send-cgi"

</ Cbj ect >

The server continues processing all Ooj ect Type directives including those in
the default object, but since the t ype attribute has already been set, no other
directive can set it to another value.

Service

Next, the server needs to execute a Ser vi ce directive to generate the response
to send to the client. The server looks at each Ser vi ce directive in turn, to find
the first one that matches the type, method and query string. If a Servi ce
directive does not specify type, method, or query string, then the unspecified
attribute matches anything.

Chapter 2, Syntax and Use of obj.conf 31

Flow of Control in obj.conf

If there is more than one Ser vi ce directive, the server applies the first one that
matches the conditions of the request, and ignores all remaining Ser vi ce
directives.

As with the Pat hCheck and Obj ect Type directives, if another object has been
matched to the request as a result of the NaneTr ans step, the server considers
the Ser vi ce directives in the matching object before considering the ones in
the default object. If the server successfully executes a Ser vi ce directive in the
matching object, it will not get round to executing the Ser vi ce directives in the
default object, since it only executes one Ser vi ce directive.

Service Examples

For an example of how Ser vi ce directives work, consider what happens when
the server receives a request for the URL D: / ser ver _name/ j os. ht nl . In this
case, all directives executed by the server are in the default object.

= The following NameTr ans directive translates the requested URL to D: /
net scape/ server 4/ docs/jos. htnl:
NameTrans fn="docunent-root" root="D:/Netscape/ Server4/docs"

= Assume that the Pat hCheck directives all succeed.

= The following Obj ect Type directive tells the server to look up the
resource’s MIME type in the MIME types table:
bj ect Type fn="type-by-extension"

= The server finds the following entry in the MIME types table, which sets the
type attribute to text/htni :
type=text/htm exts=htm htmnl

= The server invokes the following Ser vi ce directive. The value of the t ype
parameter matches anything that does not begin with magnus-i nternal /.

(For a list of all wildcard patterns, see Appendix D, “Wildcard Patterns.”)
This directive sends the requested file, j os. ht m , to the client.

Servi ce met hod="(GET| HEAD| POST) " type="*~nmagnus-i nternal /*"
fn="send-file""

For an example that involves using another object, consider what happens
when the server receives a request for htt p: // server_nanel servl et/
doCal cul ati on. cl ass. This example assumes that servlets have been

32 NSAPI Programmer’s Guide

Flow of Control in obj.conf

activated and the directory D: / / net scape/ ser ver 4/ docs/ servl et/ has been
registered as a servlet directory (that is, the server treats all files in that directory
as servlets).

The following NaneTr ans directive translates the requested URL to
D: net scape/ Server 4/ docs/ servl et/ doCal cul ati on. cl ass. This
directive also assigns the name Ser vl et ByExt to the request.

NameTrans fn="pfx2dir" fron="/servlet"
di r="D:/ Net scape/ Server 4/ docs/ servl et" name="Servl et ByExt "

As a result of the nanme assignment, the server switches to processing the
directives in the object named Ser vl et ByExt . This object is defined as:

<bj ect nanme="Servl et ByExt ">

Obj ect Type fn="force-type" type="nmagnus-internal/servlet"
Service type="magnus-internal/servlet" fn="NSServl et Service"
</ Cbj ect >

The Ser vl et ByExt object has no Pat hCheck directives, so the server
processes the Pat hCheck directives in the default object. Let’'s assume that
all Pat hCheck directives succeed.

Next, the server processes the (bj ect Type directives, starting with the one
in the Ser vl et ByExt object. This directive sets the t ype attribute to
magnus-i nternal / servl et.

Obj ect Type fn="force-type" type="magnus-internal/servlet"

The server continues processing all the Obj ect Type directives in the
default object, but since the t ype attribute is already set its value cannot be
changed.

When processing Ser vi ce directives, the server starts by considering the
Ser vi ce directive in the Ser vl et ByExt object which is:

Service type="magnus-internal/servlet" fn="NSServl et Service"

The t ype argument of this directive matches the t ype value that was set by
the Qbj ect Type directive. So the server goes ahead and executes this

Ser vi ce directive which calls the NSSer vl et Ser vi ce function. This
function invokes the requested file as a servlet and sends the output from
the servlet as the response to the client. (If the requested resource is not a
servlet, an error occurs.)

Chapter 2, Syntax and Use of obj.conf 33

Flow of Control in obj.conf

Since a Ser vi ce directive has now been executed, the server does not
process any other Ser vi ce directives. (However, if the matching object had
not had a Ser vi ce directive that was executed, the server would continue
looking at Ser vi ce directives in the default object.)

Default Service Directive

There is usually a Ser vi ce directive that does the default thing (sends a file) if
no other Servi ce directive matches a request sent by a browser. This default
directive should come last in the list of Ser vi ce directives in the default object,
to ensure it only gets called if no other Ser vi ce directives have succeeded. The
default Ser vi ce directive is usually:

Servi ce met hod="(GET| HEAD| POST) " type="*~nmagnus-i nternal /*"
fn="send-file"

This directive matches requests whose method is GET, HEAD, or POST, which
covers nearly virtually all requests sent by browsers. The value of the t ype
argument uses special pattern-matching characters. For complete information
about the special pattern-matching characters, see Appendix D, “Wildcard
Patterns.”

The characters “*~" mean “anything that doesn’t match the following
characters,” so the expression * ~magnus-i nt er nal / means “anything that
doesn’t match magnus-i nt er nal /.” An asterisk by itself matches anything, so
the whole expression *~magnus- i nt er nal / * matches anything that does not
begin with magnus-internal /.

So if the server has not already executed a Ser vi ce directive when it reaches
this directive, it executes the directive so long as the request method is GET,
HEAD or PGOST, and the value of the t ype attribute does not begin with magnus-
i nternal /. The invoked function is send-fi | e, which simply sends the
contents of the requested file to the client.

AddLog

After the server generate the response and sends it to the client, it executes
AddLog directives to add entries to the log files.

All AddLog directives are executed. The server can add entries to multiple log
files.

34 NSAPI Programmer’s Guide

Syntax Rules for Editing obj.conf

Depending on which log files are used and which format they use, the I ni t
section may need to have directives that initialize the logs. For example, if one
of the AddLog directives calls f | ex- | og, which uses the extended log format,
the I ni t section must contain a directive that invokes f | ex-i nit to initialize
the flexible logging system.

For more information about initializing logs, see the discussion of the functions
flex-init andinit-clf in Chapter 3, “Predefined SAFs and the Request
Handling Process.”

Error

If an error occurs during the request handling process, such as if a Pat hCheck
or Aut hTr ans directive denies access to the requested resource, or the
requested resource does not exist, then the server immediately stops executing
all other directives and immediately starts executing the Err or directives.

Syntax Rules for Editing obj.conf

Several rules are important in the obj . conf file. Be very careful when editing
this file. Simple mistakes can make the server fail to start or operate incorrectly.

Order of Directives

The order of directives is important, since the server executes them in the order
they appear in obj . conf . The outcome of some directives affect the execution
of other directives.

For Pat hCheck directives, the order within the Pat hCheck section is not so
important, since the server executes all Pat hCheck directives. However, in the
bj ect Type section the order is very important, because if an Obj ect Type
directive sets an attribute value, no other Cbj ect Type directive can change that
value. For example, if the default Qbj ect Type directives were listed in the
following order (which is the wrong way round), every request would have its
t ype value set to t ext/ pl ai n, and the server would never have a chance to
set the t ype according to the extension of the requested resource.

Chapter 2, Syntax and Use of obj.conf 35

Syntax Rules for Editing obj.conf

Obj ect Type fn="force-type" type="text/plain"
hj ect Type fn="type-by-extension"

Similarly, the order of directives in the Ser vi ce section is very important. The
server executes the first Ser vi ce directive that matches the current request and
does not execute any others.

Parameters

The number and names of parameters depends on the function. The order of
parameters on the line is not important.

Case Sensitivity

Items in the obj . conf file are case-sensitive including function names,
parameter names, many parameter values, and path names.

Separators

The C language allows function names to be composed only of letters, digits,
and underscores. You may use the hyphen (-) character in the configuration file
in place of underscore () for your C code function names. This is only true for
function names.

Quotes

Quotes (") are only required around value strings when there is a space in the
string. Otherwise they are optional. Each open-quote must be matched by a
close-quote.

36 NSAPI Programmer’s Guide

Syntax Rules for Editing obj.conf

Spaces

Spaces are not allowed at the beginning of a line except when continuing the
previous line. Spaces are not allowed before or after the equal (=) sign that
separates the name and value. Spaces are not allowed at the end of a line or on
a blank line.

Line Continuation

A long line may be continued on the next line by beginning the next line with
a space or tab.

Path Names

Always use forward slashes (/) rather than back-slashes (\) in path names
under Windows NT. Back-slash escapes the next character.

Comments

Comments begin with a pound (#) sign. If you manually add comments to
obj . conf, then use the Server Manager interface to make changes to your
server, the Server Manager will wipe out your comments when it updates
obj . conf.

Chapter 2, Syntax and Use of obj.conf 37

Syntax Rules for Editing obj.conf

38 NSAPI Programmer’s Guide

Chapter

Predefined SAFs and the Request
Handling Process

This chapter describes the directives and pre-defined Server Application
Functions (SAFs) that are provided as standard with the iPlanet Web Server.
They are used in the obj . conf file to give instructions to the server. For a
discussion of the use and syntax of obj . conf, see the previous chapter,
Chapter 2, “Syntax and Use of obj.conf.”

This chapter includes functions that are part of the core functionality of iPlanet
Web Server. It does not include functions that are available only if additional
components, such as servlets, web publishing, WAI, and server-parsed HTML
are enabled.

The functions and arguments described here are applicable to Enterprise Server
3.x and iPlanet Web Server 4.x. Functions and arguments that are new to
iPlanet Web Server 4.x are indicated as such.

This chapter contains a section for each directive which lists all the pre-defined
Server Application Functions that can be used with that directive.

The directives are:

« Init Stage

e AuthTrans Stage
¢« NameTrans Stage
» PathCheck Stage
» ObjectType Stage
« Service Stage

e AddLog Stage

e Error Stage

For an alphabetical list of pre-defined SAFs, see Appendix J, “Alphabetical List
of Pre-defined SAFs.”

Chapter 3, Predefined SAFs and the Request Handling Process 39

The following table lists the SAFs that can be used with each directive.

Table3.1

Init Stage cache-init
cindex-init
dns-cache-init
flex-init
flex-rotate-init
init-cgi
init-clf
init-uhome

| oad- nodul es

| oad-types

pool -init

regi ster-http-nethhod
t hr ead- pool -init

AuthTrans Stage basi c-aut h
basi c- ncsa

get-sslid

NameTrans Stage assi gn- nane
docunent - r oot
hone- page

pf x2di r

pf x2di r
redirect
uni x- hone

PathCheck Stage cert2user
check- ac
deny- exi st ence
find-index
find-links
find-pat hi nfo
get-client-cert
| oad-config
nt-uri-clean
nt cgi check
require-auth
ssl - check

ssl -1 ogout

uni x-uri-cl ean

40 NSAPI Programmer’s Guide

Table3.1

ObjectType Stage

force-type
set-default-type
sht m - hackt ype
type- by- exp

t ype- by- ext ensi on

Service Stage

add- f oot er
add- header
append-trailer
i magenap

i ndex- conmon
i ndex-si npl e
key-toosmal |
list-dir
make- dir
parse-htn
query-handl er
remove-dir
remove-file
rename-file
send- cgi
send-file
send-r ange
send- shel | cgi
send- wi ncg
upl oad-file

AddLog Stage

conmon- | og
flex-1og
recor d- user agent

Error Stage

send-error

Init Stage

Init Stage

I ni t directives are invoked during server initialization when the server is
started or restarted. These directives perform tasks such as initializing log files

and loading plugins.

Chapter 3, Predefined SAFs and the Request Handling Process 41

Init Stage

On Unix platforms, each I ni t directive has an optional Lat el ni t parameter. If
it is set to “yes” or is not provided, the function is executed by the child process
after it is forked from the parent. If it is set to “no”, the function is executed by
the parent process before the fork. Any activities that must be performed as the
user root (such as writing to a root-owned file) must be done before the fork.
Any activities involving the creation of threads must be performed after the
fork, with the exception of t hr ead- pool -i ni t, which requires the optional
Earl yl ni t parameter to be used and set to “yes.”

Upon failure, I ni t -class functions return REQ _ABORTED. The server logs the
error according to the instructions in the Error directives, and terminates. Any
other result code is considered a success.

The following Init-class functions are described in detail in this section:
= cache-init configures server caching for increased performance.

= cindex-init changes the default characteristics for fancy indexing.
« dns-cache-init configures DNS caching.

= flex-init initializes the flexible logging system.

e flex-rotate-init enables rotation for flexible logs.

e init-cgi changes the default settings for CGl programs.

e init-clf initializes the Common Log subsystem.

e init-uhome loads user home directory information.

< | oad- nodul es loads shared libraries into the server.

= | oad-types loads file extension to MIME type mapping information.
= pool -init configures pooled memory allocation.

= register-http-nethod lets you extend the HTTP protocol by registering
new HTTP methods.

= thread-pool -init configures an additional thread pool.
cache-init

Applicable in I ni t -class directives.

The cache-i ni t function controls file caching for static files, such as HTML
pages, GIF files and sound files. The server caches files to improve
performance. If a request is received for a file that is in the cache, the server
retrieves the requested resource from the cache, which is more efficient than
retrieving it from its source. File caching is enabled by default.

42 NSAPI Programmer’s Guide

Note

Parameters:

Init Stage

To optimize server speed, you should ideally have enough RAM for the server
and cache because swapping can be slow. Do not allocate a cache that is
greater in size than the amount of memory on the system.

Files can be cached in various ways. Small files might be read into the heap
space; larger files might be cached using memory-mapping; and in some
circumstance files might be cached as open file descriptors.

In iPlanet Web Server 4.x, much of the functionality of the file cache is
controlled by a new configuration file called nsf c. conf . For information about
nsf c. conf, see the tuning chapter in the iPlanet Web Server Administrator’s
Guide.

di sabl e (optional) specifies whether the file cache is disabled or
not. If set to anything but “false” the cache is disabled. By
default, the cache is enabled.

Pol I I nt erval (optional) specifies how often the files in the cache are
checked for changes. The default is 5 seconds. In iPlanet
Web Server 4.x, this parameter is ignored -- use the
MaxAge parameter in the nsf c. conf file instead.

MaxNurber Of CachedFi | (optional) maximum number of entries in the accelerator

es cache. The default is 4096, minimum is 32, maximum is
32K.

MaxNurber Of OpenCache (optional) Maximum number of memory-mapped cached

dFiles files that can be open simultaneously.

The default is 512, minimum is 32, maximum is 32.

MaxCachedFi | eSi ze (optional) maximum size of a file that can be cached as a
memory-mapped file.

The default is 525K.

In iPlanet Web Server 4.x, this parameter is ignored. Use
the Medi unFi | eSi zeLi mi t parameter in nsf c. conf
instead.

In iPlanet Web Server 4.x, this parameter is ignored on NT
because it no longer applies to the platform.

Chapter 3, Predefined SAFs and the Request Handling Process 43

Init Stage

MaxTot al CachedFi | eSi (optional) total size of all files that are cached as memory-
ze mapped files. Default is 10K, minimum is 1K, maximum is
16M.

In iPlanet Web Server 4.x, this parameter is ignored on
Unix. Use the Medi unti | eSpace parameter in
nsf c. conf instead.

In iPlanet Web Server 4.x, this parameter is ignored on NT
because it no longers applies to the platform.

CacheHashSi ze (optional) size of hash table for the file cache accelerator.
Default is 8192K, minimum is 32, max is 32K.

Example
Init fn=cache-init Polllnterval e=2
MaxNunber OF CachedFi | es=8192

44 NSAPI Programmer’s Guide

Init Stage

cindex-init
Applicable in I ni t -class directives.

The function ci ndex-i ni t sets the default settings for common indexing.
Common indexing (also known as fancy indexing) is performed by the Service
function i ndex- conmon. Indexing occurs when the requested URL translates to
a directory that does not contain an index file or home page, or no index file or
home page has been specified.

In common (fancy) indexing, the directory list shows the name, last modified
date, size and description for each indexed file or directory.

Parameters:
opts (optional) is a string of letters specifying the options to
activate. Currently there is only one possible option:

= s tells the server to scan each HTML file in the directory
being indexed for the contents of the HTML <TI TLE>
tag to display in the description field. The <TI TLE> tag
must be within the first 255 characters of the file. This
option is off by default.

Note: In Enterprise Server 3.x and previously, the search for
the <TI TLE> tag is case sensitive. In iPlanet Web Server
4.x, the search is no longer case-sensitive.

Chapter 3, Predefined SAFs and the Request Handling Process 45

Init Stage

wi dt hs

ti mezone

f or mat

i ghore

icon-uri

Examples
Init fn=cindex-init

46 NSAPI Programmer’s Guide

(optional) specifies the width for each column in the
indexing display. The string is a comma-separated list of
numbers that specify the column widths in characters for
name, last-modified date, size, and description respectively.

Note: In Enterprise Server 3.x and previous versions, the
wi dt hs parameter does not work properly. It basically acts
as a flag, since the actual widths (for non-zero values) are
hardcoded. However, in iPlanet Web Server 4.x, the widths
parameter works correctly. The default values in iPlanet
Web Server 4.x are 22,18,8,33.

The final three values (corresponding to last-modified date,
size, and description respectively) can each be set to 0 to
turn the display for that column off. The name column
cannot be turned off. The minimum size of a column (if
the value is non-zero) is specified by the length of its title -
- for example, the minimum size of the Date column is 5
(the length of “Date” plus one space). If you set a non-zero
value for a column which is less than the length of its title,
the width defaults to the minimum required to display the
title.

(optional) iPlanet Web Server 4.X only. This indicates
whether the last-modified time is shown in local time or in
Greenwich Mean Time. The values are GMTI or | ocal . The
default is | ocal .

(optional) iPlanet Web Server 4.X only. This parameter
determines the format of the last modified date display. It
uses the format specification for the UNIX function
strftinme().

The default is %6l- %b- %r % YM

(optional) specifies a wildcard pattern for file names the
server should ignore while indexing. File names starting
with a period (.) are always ignored. The default is to only
ignore file names starting with a period (.).

(optional) specifies the URI prefix the i ndex- conmon
function uses when generating URLs for file icons (. gi f
files). By default, itis / nmc-i cons/ . Ifi con-uri is
different from the default, the pf x2di r function in the
NameTr ans directive must be changed so that the server
can find these icons.

wi dt hs=50,1,1,0

See Also

Init Stage

Init fn=cindex-init ignore=*private*
Init fn=cindex-init w dths=22, 0, 0, 50

i ndex- conmon, find-index, hone-page

dns-cache-init

Parameters

Example

flex-init

Applicable in I ni t -class directives.

The dns- cache-i ni t function specifies that DNS lookups should be cached
when DNS lookups are enabled. If DNS lookups are cached, then when the

server gets a client’s host name information, it stores that information in the

DNS cache. If the server needs information about the client in the future, the
information is available in the DNS cache.

You may specify the size of the DNS cache and the time it takes before a cache
entry becomes invalid. The DNS cache can contain 32 to 32768 entries; the
default value is 1024 entries. Values for the time it takes for a cache entry to
expire (specified in seconds) can range from 1 second to 1 year; the default
value is 1200 seconds (20 minutes).

cache-si ze (optional) specifies how many entries are contained in the
cache. Acceptable values are 32 to 32768; the default value
is 1024.

expire (optional) specifies how long (in seconds) it takes for a

cache entry to expire. Acceptable values are 1 to 31536000
(1 year); the default is 1200 seconds (20 minutes).

Init fn="dns-cache-init" cache-size="2140" expire="600"

Applicable in I ni t -class directives.

The f1 ex-init function opens the named log file to be used for flexible
logging and establishes a record format for it. The log format is recorded in the
first line of the log file. You cannot change the log format while the log file is in
use by the server.

Chapter 3, Predefined SAFs and the Request Handling Process 47

Init Stage

Parameters

The f1 ex- | og function writes entries into the log file during the AddLog stage
of the request handling process.

The log file stays open until the server is shut down or restarted (at which time
all logs are closed and reopened).

Note: If the server has AddLog St age directives that call f | ex- | og, the flexible
log file must be initialized by f | ex-i ni t during server initialization.

You may specify multiple log file names in the same f 1 ex-i ni t function call.
Then use multiple AddLog directives with the f | ex- | og function to log
transactions to each log file.

The f1 ex-init function may be called more than once. Each new log file
name and format will be added to the list of log files.

If you move, remove, or change the log file without shutting down or restarting
the server, client accesses might not be recorded. To save or backup a log file,
you need to rename the file and then restart the server. The server first looks
for the log file by name, and if it doesn't find it, creates a new one (the
renamed original log file is left for you to use). The exception to this rule is if
log rotation has been enabled in iPlanet Web Server 4.x.

For information on rotating log files, see fl ex-rotate-init.

The f1 ex-i ni t function has three parameters: one that names the log file, one
that specifies the format of each record in that file, and one that specifies the
logging mode.

| ogFi | eNane The name of the parameter is the name of the log file. The
value of the parameter specifies either the full path to the
log file or a file name relative to the server’s | ogs
directory. For example:

access="/usr/ net scape/ server4/ https-
servernane/ | ogs/ access"

myl ogfile = "l ogl”

You will use the log file name later, as a parameter to the
f | ex-1 og function.

format. | ogFi | eNanme specifies the format of each log entry in the log file.

For information about the format, see the “More on Log
Format” section below.

48 NSAPI Programmer’s Guide

Init Stage

rel axed. | ogFi | eNanme New in iPlanet Web Server 4.0.

If you turn on relaxed logging and the logged component
is one that would normally block static page acceleration,
the server skips logging the component (instead it puts a
blank in the log file) if static page acceleration is enabled.
However, if static page acceleration is not enabled, the
server logs the full value of the component.

If the value is t r ue, on, yes, or 1, relaxed logging is on,
otherwise it is off.

An unpleasant side effect of logging a variable other than
St at us, Content - Lengt h, d i ent - Host, Ful | -
Request , Met hod, Pr ot ocol , Query-String, URl,
Ref er er, User - Agent , Aut hori zat i on, and Aut h-
User was that, because the variable could not be provided
by the internal accelerated path, the accelerated path was
not used at all. Therefore, performance numbers decreased
significantly for requests that would typically benefit from
the accelerator, such as static files and images.

As of iPlanet Web Server 4.x, you can relax the
requirements of the log subsystem by adding the r el axed
parameter to the f| ex-i ni t line in the obj . conf file.
This changes the behavior of the server in the following
ways:

= If variables other than those previously listed are
logged, this does not prevent the accelerated path from
being used anymore.

= If the accelerator is used, the non-special variable
(which is then not available internally) is logged as

“wn

= The server does not use the accelerator for dynamic
content such as CGls or SHTML, so all the variables are
logged correctly for these requests.

MoreonLog The flex-init function recognizes anything contained between percent signs

Format

(%) as the name portion of a name-value pair stored in a parameter block in the
server. (The one exception to this rule is the %SYSDATE% component which
delivers the current system date.) %SYSDATE% is formatted using the time
format %d/%b/%Y:%H:%M:%S plus the offset from GMT.

(See Chapter 4, “Creating Custom SAFs,” for more information about
parameter blocks and Chapter 5, “NSAPI Function Reference,” for functions
to manipulate pblocks.)

Chapter 3, Predefined SAFs and the Request Handling Process 49

Init Stage

50 NSAPI Programmer’s Guide

Any additional text is treated as literal text, so you can add to the line to
make it more readable. Typical components of the formatting parameter are
listed in Table 3.2. Certain components might contain spaces, so they
should be bounded by escaped quotes (\ ")

If no format parameter is specified for a log file, the common log format is
used:

"UBes->client.ip%- YReq->vars. aut h-user % [“SYSDATEA
\"%Req- >reqpb. cl f-request %" 9Req- >srvhdrs. cl f-status%
%Req- >srvhdrs. cont ent - | engt h%

New in iPlanet Web Server 4.0: you can now log cookies by logging the
Req- >header s. cooki e. nane component.

iPlanet Web Server can use cache acceleration for serving static pages (as
discussed in cache-i ni t). However, some components of log format
entries block this acceleration (unless the logging mode is relaxed) causing
the server to use the unaccelerated path for serving static pages. (The server
always uses the unaccelerated path to serve dynamically-generated pages.)
The following table indicates which components of the log format entry
allow static page acceleration to proceed for the current request. If the log
format uses any components that do not allow static page acceleration, the
performance of serving static pages may decrease significantly (unless the
logging mode is relaxed).

In the following table, the components that are enclosed in escaped double
quotes (\") are the ones that could potentially resolve to values that have
white spaces.

Init Stage

Table 3.2 Typical components of flex-init formatting

Flex-log option Component Allows static page
acceleration

Client Host %Ses->client.ip% Yes
name (unless

i ponly is

specified in flex-

log or DNS

name is not

available) or IP

address

Client DNS name %Ses->client. dns% Yes
System date YSYSDATEY Yes

Full HTTP \ " %Req- >reqpb. cl f-request % " Yes
request line

Status 9%Req- >srvhdrs. cl f-status% Yes

Response %Req- >srvhdrs. cont ent - | engt h% Yes
content length

Response %Req- >srvhdrs. content -t ype% Yes
content type

Referer header \ "%Req- >headers.referer%n” Yes
User-agent \ "%Req- >headers. user-agent %" Yes
header

HTTP Method %Req- >r eqpb. net hod% Yes
HTTP URI 9%Req- >r eqpb. uri % Yes
HTTP query 9%Req- >r eqpb. quer y% Yes
string

HTTP protocol \ " %Req- >r eqpb. prot ocol %" Yes
version

Accept header %Req- >header s. accept % No
Date header \ "%Req- >headers. date% " No

Chapter 3, Predefined SAFs and the Request Handling Process 51

Init Stage

Table 3.2 Typical components of flex-init formatting

Flex-log option Component Allows static page
acceleration

If-Modified-Since ~ %Req- >headers. i f-nodi fi ed- No

header since%

Authorization %Req- >header s. aut hori zati on% Yes

header

Any header \ "%Req- >header s. header name% " No (unless
value ot herw se

i ndi cated for
speci fi ¢ header

nanes)
Name of %Req- >var s. aut h-user % Yes
authorized user
Value of a \ " %Req- >header s. cooki e. nane% " No
cookie
Value of any \ "%Req- >vars. var nane% " No
variable

in Req- >vars

Examples The first example below initializes flexible logging into the file / usr/
net scape/ server 4/ htt ps-servernane/ | ogs/ access.

Init fn=flex-init access="/usr/netscapel/server4/https-
servernane/ | ogs/ access" format. access="%%es->client.ip%
- YReq->vars. aut h-user % [“SYSDATEY] \" %Req- >r eqpb. cl f -
request %" 9%Req- >srvhdrs. cl f - st at us% %Req-

>srvhdrs. content - | engt h%

This will record the following items
< ip or hostname, followed by the three characters “ -
= the user name, followed by the two characters “ [”
= the system date, followed by the two characters “]
< the full HTTP request in quotes, followed by a single space
= the HTTP result status in quotes, followed by a single space
= the content length

52 NSAPI Programmer’s Guide

See Also

Init Stage

This is the default format, which corresponds to the Common Log Format
(CLF).

It is advisable that the first six elements of any log always be in exactly this
format, because a number of log analyzers expect that as output.

The following example initializes flexible logging into the file / user/
net scape/ server 4/ htt ps-servernane/ | ogs/ ext ended.

Init fn=flex-init extended="/usr/netscape/server4/

htt ps- server nane/ | ogs/ ext ended" fornmat. ext ended="%Ses-
>client.ip%- %eq->vars. aut h-user % [USYSDATEXY \" %Req-
>reqpb. cl f-request %" 9%Req- >srvhdrs. cl f - st at us% %Req-
>srvhdrs. cont ent -1 engt h% %Req- >headers. ref erer % \ " %Req-
>header s. user-agent% " %Req- >r eqpb. net hod% ¥Req-

>reqpb. uri % %Req- >r eqpb. quer y% %Req- >r eqpb. pr ot ocol %

flex-rotate-init, flex-Iog

flex-rotate-init

Parameters

Applicable in I ni t -class directives. New in iPlanet Web Server 4.0.

The fl ex-rotate-init function enables log rotation for logs that use the
flexible logging format. Call this function in the I ni t stage of obj . conf before
calling fl ex-init. The fl ex-rotate-init function allows you to specify a
time interval for rotating log files. At the specified time interval, the server
moves the log file to a file whose name indicates the time of moving. The

f1 ex-1 og function in the AddLog stage then starts logging entries in a new log
file. The server does not need to be shut down while the log files are being
rotated.

Note that the server keeps all rotated log files forever, so you will need to clean
them up as necessary to free up disk space.

By default, log rotation is disabled.

rotate-start Indicates the time to start rotation. This value is a 4 digit
string indicating the time in 24 hour format, for example,
0900 indicates 9 am while 1800 indicates 9 pm.

Chapter 3, Predefined SAFs and the Request Handling Process 53

Init Stage

rotate-interval Indicates the number of minutes to elapse between each
log rotation.

Example This example enables log rotation, starting at midnight and occurring every
hour.

Init fn=flex-rotate-init rotate-start=2400 rot at e-
i nterval s=60

SeeAlso flex-init, flex-log

init-cgi
Applicable in I ni t -class directives.
Theinit-cgi function performs certain initialization tasks for CGI execution.
Two options are provided: timeout of the execution of the CGI script, and
establishment of environment variables.
Parameters
ti meout (optional) specifies how many seconds the server waits for
CGI output. If the CGI script has not delivered any output
in that many seconds, the server terminates the script. The
default is 300 seconds.
env-vari abl e (optional) specifies the name and value for an environment
variable that the server places into the environment for the
CGl. You can set any number of environment variables in a
single i ni t - cgi function.
Example

Init fn=init-cgi LD _LIBRARY_PATH=/usr/lib;/usr/local/lib
SeeAlso send-cgi, send-wi ncgi, send-shellcgi

init-clf

Applicable in I ni t -class directives.

54 NSAPI Programmer’s Guide

Parameters

Examples

See Also

init-uhome

Init Stage

The i nit-clf function opens the named log files to be used for common
logging. The common- | og function writes entries into the log files during the
AddLog stage of the request handling process. The log files stay open until the
server is shut down (at which time the log files are closed) or restarted (at
which time the log files are closed and reopened).

Note: If the server has an AddLog St age directive that calls conmon- | og,
common log files must be initialized by i ni t-cl f during the I ni t stage.

Note: This function should only be called once. If it is called again, the new
call will replace log file nhames from all previous calls.

If you move, remove, or change the log file without shutting down or restarting
the server, client accesses might not be recorded. To save or backup a log file,
you need to rename the file (and for Unix, send the - HUP signal) and then
restart the server. The server first looks for the log file by name, and if it doesn’t
find it, creates a new one (the renamed original log file is left for you to use).

| ogFi | eNane The name of the parameter is the name of the log file. The
value of the parameter specifies either the full path to the
log file or a file name relative to the server’s | ogs
directory. For example:

access="/usr/ net scape/ server4/ htt ps-
server namne/ | ogs/ access"
nyl ogfile = "l ogl"

You will use the log file name later, as a parameter to the
conmon- | og function.

Init fn=init-clf access=/usr/netscape/server4/ https-
boot s/ | ogs/ access

Init fn=init-clf tenplog=/tnp/nytenpl og tenpl og2=/tnp/
nmyt enpl 0g2

conmon-1 og, record-useragent

Applicable in I ni t -class directives.

Chapter 3, Predefined SAFs and the Request Handling Process 55

Init Stage

Unix Only. The i ni t - uhome function loads information about the system’s
user home directories into internal hash tables. This increases memory usage
slightly, but improves performance for servers that have a lot of traffic to home

directories.
Parameters
pwile (optional) specifies the full file system path to a file other
than / et ¢/ passwd. If not provided, the default Unix path
(/ et c/ passwd) is used.
Examples

Init fn=init-uhome
Init fn=init-uhome pwiile=/etc/passwd-http

See Also uni x-hone, find-links

load-modules

Applicable in I ni t -class directives.

The | oad- nodul es function loads a shared library or Dynamic Link Library
into the server code. Specified functions from the library can then be executed
from any subsequent directives. Use this function to load new plugins or SAFs.

If you define your own Server Application Functions, you get the server to load
them by using the | oad- nodul es function and specifying the shared library or

dll to load.
Parameters
shlib specifies either the full path to the shared library or
dynamic link library or a file name relative to the server
configuration directory.
funcs is a comma separated list of the names of the functions in

the shared library or dynamic link library to be made
available for use by other | ni t or Ser vi ce directives in
obj . conf. The list should not contain any spaces. The
dash (-) character may be used in place of the underscore
() character in function names.

56 NSAPI Programmer’s Guide

Examples

load-types

Init Stage

Nat i veThr ead (optional) specifies which threading model to use.
= no causes the routines in the library to use user-level
threading.
= yes enables kernel-level threading. The default is yes.
pool the name of a custom thread pool, as specified in t hr ead-
pool -init.

Init fn=load-nodul es shlib="C: /mysrvfns/corpfns.dll"
funcs="noveit"

Init fn=load-nodul es shlib="/nysrvfns/corpfns.so"
funcs="nyinit, myservice"
Init fn=nyinit

Applicable in I ni t -class directives.

The | oad- t ypes function loads the file that the server uses to look up mime
types.

More explicitly, this function uses the indicated file to create a table that maps
file-name extensions to a file’s content-type, content-encoding, and content-
language. During the Ooj ect Type phase, the function t ype- by- ext ensi on
instructs the server to look in this table to determine the type of content
requested by the client, based on the extension of the requested resource.

If you edit the MIME types file, you will need to restart the server to load the
changes.

The file name extensions are not case-sensitive.

This function must be called in order for the t ype- by- ext ensi on and t ype-
by- exp SAFs, and the ci nf o_fi nd NSAPI functions to work properly.

Note: MIME types files must begin with the following line or they will not be
accepted:#- - Net scape Communi cati ons Corporation M ME | nformation

Chapter 3, Predefined SAFs and the Request Handling Process 57

Init Stage

Parameters
nm me-types specifies either the full path name to a MIME types file or a
path name relative to the server configuration directory.
The server comes with a default file called mi re. t ypes in
the server’s conf i g directory.

| ocal -types (optional) specifies either the full path name to a MIME
types file or a path name relative to the server configuration
directory. The file can be used to maintain types that are
applicable only to your server.

Examples
Init fn=load-types nime-types=m ne.types
Init fn=load-types nminme-types=nm ne.types |ocal -types=/
usr/ net scape/ server4/ | ocal .types

SeeAlso type-by-extension, type-by-exp, force-type

pool-init
Applicable in I ni t -class directives.

The pool -i ni t function changes the default values of pooled memory settings.
The size of the free block list may be changed or pooled memory may be
entirely disabled.

Memory allocation pools allow the server to run significantly faster. If you are
programming with the NSAPI, note that MALLOC, REALLOC, CALLOC, STRDUP,
and FREE work slightly differently if pooled memory is disabled. If pooling is
enabled, the server automatically cleans up all memory allocated by these
routines when each request completes. In most cases, this will improve
performance and prevent memory leaks. If pooling is disabled, all memory is
global and there is no clean-up.

If you want persistent memory allocation, add the prefix PERM_ to the name of
each routine (PERM_MALLOC, PERM REALLCC, PERM CALLOC, PERM STRDUP, and
PERM FREE).

Note: Any memory you allocate from Init-class functions will be allocated as
persistent memory, even if you use MALLCOC. The server cleans up only the
memory that is allocated while processing a request, and because Init-class
functions are run before processing any requests, their memory is allocated
globally.

58 NSAPI Programmer’s Guide

Init Stage

Parameters
free-size (optional) maximum size in bytes of free block list. May not
be greater than 1048576.
di sabl e (optional) flag to disable the use of pooled memory.
Should have a value of true or false. Default value is false.
Example

Init fn=pool-init disable=true

register-http-method

Applicable in I ni t -class directives. New in iPlanet Web Server 4.1.

This function lets you extend the HTTP protocol by registering new HTTP
methods. (You do not need to register the default HTTP methods.)

Upon accepting a connection, the server checks to see if the method that it
received is known to it. If the server does not recognize the method, it returns
a “501 Method Not Implemented” error message.

Parameters

nmet hods is a comma separated list of the names of the methods you
are registering.

Example The following example shows the use of r egi st er - ht t p- net hod and a
Servi ce function for one of the methods.

Init fn="register-http-nethod"
nmet hods="My_METHOD1, MY_METHOD2" Servi ce fn="M/Handl er"
met hod=" My_METHOD1"
thread-pool-init
Applicable in I ni t -class directives.

This function creates a new pool of user threads. A pool must be declared
before it's used. To tell a plugin to use the new pool, specify the pool
parameter when loading the plugin with the Init-class function | oad- nodul es.

Chapter 3, Predefined SAFs and the Request Handling Process 59

Init Stage

One reason to create a custom thread pool would be if a plugin is not thread-
aware, in which case you can set the maximum number of threads in the pool
to 1.

The older parameter Nat i veThr ead=yes always engages one default native
pool, called Nat i vePool .

The native pool on Unix is normally not engaged, as all threads are OS-level
threads. Using native pools on Unix may introduce a small performance
overhead as they’ll require an additional context switch; however, they can be
used to localize the j vm st i ckyAt t ach effect or for other purposes, such as
resource control and management or to emulate single-threaded behavior for
plug-ins (by setting maxThr eads=1).

On Windows NT, the default native pool is always being used and iPlanet Web
Server uses fibers (user-scheduled threads) for initial request processing. Using
custom additional pools on Windows NT introduces no additional overhead.

In addition, native thread pool parameters can be added to the magnus. conf
file for convenience. For more information, see “Native Thread Pools” on
page 224 in Appendix B, “Variables in magnus.conf.”

Parameters
name name of the thread pool.
maxt hr eads maximum number of threads in the pool.
nm nt hr eads minimum number of threads in the pool.
gueueSi ze size of the queue for the pool. If all the threads in the pool

are busy, further request-handling threads that want to get
a thread from the pool will wait in the pool queue. The
number of request-handling threads that can wait in the
queue is limited by the queue size. If the queue is full, the
next request-handling thread that comes to the queue is
turned away, with the result that the request is turned
down, but the request-handling thread remains free to
handle another request instead of becoming locked up in
the queue.

st ackSi ze stack size of each thread in the native (kernel) thread pool.

60 NSAPI Programmer’s Guide

AuthTrans Stage

Example

Init fn=thread-pool-init name="nmny-custom pool "
maxt hr eads=100 mi nt hr eads=1 queuesi ze=200

Init fn=load-nmodul es shlib="C: /nydir/nyplugin.dlI"
funcs="tracker" pool ="nmy-custom pool "

Seealso | oad- nbdul es

AuthTrans Stage

Aut hTr ans stands for Authorization Translation. Aut hTr ans directives give the
server instructions for checking authorization before allowing a client to access
resources. Aut hTr ans directives work in conjunction with Pat hCheck
directives. Generally, an Aut hTr ans function checks if the username and
password associated with the request are acceptable, but it does not allow or
deny access to the request -- it leaves that to a Pat hCheck function.

The server handles the authorization of client users in two steps.

<« AuthTrans Directive - validates authorization information sent by the client
in the Authorization header.

= PathCheck Stage - checks that the authorized user is allowed access to the
requested resource.

The authorization process is split into two steps so that multiple authorization
schemes can be easily incorporated, as well as providing the flexibility to have
resources that record authorization information but do not require it.

Aut hTr ans functions get the username and password from the headers
associated with the request. When a client initially makes a request, the
username and password are unknown so the Aut hTr ans functions and

Pat hCheck functions work together to reject the request, since they can’t
validate the username and password. When the client receives the rejection, its
usual response is to pop up a dialog box asking for the username and
password to enter the appropriate realm, and then the client submits the
request again, this time including the username and password in the headers.

If there is more than one Aut hTr ans directive in obj . conf, each function is
executed in order until one succeeds in authorizing the user.

Chapter 3, Predefined SAFs and the Request Handling Process 61

AuthTrans Stage

The following AuthTrans-class functions are described in detail in this section:

= basic-auth calls a custom function to verify user name and password.
Optionally determines the user’s group.

= basi c- ncsa verifies user name and password against an NCSA-style or
system DBM database. Optionally determines the user’'s group.

= get-sslid retrieves a string that is unique to the current SSL session and
stores it as the ssl -i d variable in the Sessi on->cl i ent parameter block.

basic-auth

Applicable in Aut hTr ans-class directives.

The basi c- aut h function calls a custom function to verify authorization
information sent by the client. The Authorization header is sent as part of the
basic server authorization scheme.

This function is usually used in conjunction with the PathCheck-class function
require-auth.

Parameters

aut h-type specifies the type of authorization to be used. This should
always be basi c.

user db (optional) specifies the full path and file name of the user
database to be used for user verification. This parameter
will be passed to the user function.

userfn is the name of the user custom function to verify
authorization. This function must have been previously
loaded with | oad- nodul es. It has the same interface as
all the SAFs, but it is called with the user name (user),
password (pw), user database (user db), and group
database (gr oupdb) if supplied, in the pb parameter. The
user function should check the name and password using
the database and return REQ_NOACTI ON if they are not
valid. It should return REQ PROCEED if the name and
password are valid. The basic-auth function will then add
aut h-type, aut h-user (user), aut h-db (user db),
and aut h- passwor d (pw, Windows NT only) to the r g-
>vars pbl ock.

groupdb (optional) specifies the full path and file name of the user
database. This parameter will be passed to the group
function.

62 NSAPI Programmer’s Guide

Examples

See Also

basic-ncsa

Parameters

AuthTrans Stage

groupfn (optional) is the name of the group custom function that
must have been previously loaded with | oad- nodul es. It
has the same interface as all the SAFs, but it is called with
the user name (user), password (pw), user database
(user db), and group database (gr oupdb) in the pb
parameter. It also has access to the aut h-t ype, aut h-
user (user), aut h-db (user db), and aut h- passwor d
(pw, Windows NT only) parameters in the r g- >var s
pbl ock. The group function should determine the user’s
group using the group database, add it to r g- >var s as
aut h- gr oup, and return REQ_PROCEED if found. It
should return REQ_NOACTI ON if the user’s group is not
found.

Init fn=load-nodul es shlib=/path/to/ mycustonmauth.so
funcs=hardcoded_aut h

Aut hTrans fn=basi c-auth auth-type=basic
user f n=har dcoded_aut h

Pat hCheck fn=require-auth auth-type=basic real n="Marketing
Pl ans"

require-auth

Applicable in Aut hTr ans-class directives.

The basi c- ncsa function verifies authorization information sent by the client
against a database. The Authorization header is sent as part of the basic server
authorization scheme.

This function is usually used in conjunction with the PathCheck-class function
require-auth.

aut h-type specifies the type of authorization to be used. This should
always be basi c.

Chapter 3, Predefined SAFs and the Request Handling Process 63

AuthTrans Stage

Examples

See Also

get-sslid

dbm (optional) specifies the full path and base file name of the
user database in the server’s native format. The native
format is a system DBM file, which is a hashed file format
allowing instantaneous access to billions of users. If you
use this parameter, don’t use the userfi | e parameter as
well.

userfile (optional) specifies the full path name of the user database
in the NCSA-style HTTPD user file format. This format
consists of lines using the format nane: passwor d, where
passwor d is encrypted. If you use this parameter, don't
use dbm

grpfile (optional) specifies the NCSA-style HTTPD group file to be
used. Each line of a group file consists of gr oup: user 1
user2 ... user Nwhere each user is separated by spaces.

Aut hTrans fn=basi c-ncsa aut h-type=basi ¢ dbm=/ net scape/
server4/userdb/rs

Pat hCheck fn=require-auth auth-type=basic real m="Marketing
Pl ans”

Aut hTrans fn=basi c-ncsa aut h-type=basi c userfil e=/ netscape/
server4/ . htpasswd grpfil e=/ netscape/serverd/.grpfile

Pat hCheck fn=require-auth auth-type=basic real m="Marketing
Pl ans”

require-auth

Applicable in Aut hTr ans-class directives.

The get - ssl i d function retrieves a string that is unique to the current SSL
session, and stores it as the ssl -i d variable in the Sessi on->cl i ent
parameter block.

If the variable ssl -i d is present when a CGl is invoked, it is passed to the CGI
as the HTTPS_SESSI ONI D environment variable.

The get - ssl i d function has no parameters and always returns REQ NOACTI ON.
It has no effect if SSL is not enabled.

64 NSAPI Programmer’s Guide

Parameters

NameTrans Stage

Note: iPlanet Web Server 4.x incorporates the functionality of get - ssli d into
the standard processing of an SSL connection, so there should no longer be a
need to use get - ssl i d as of iPlanet Web Server 4.x.

none

NameTrans Stage

assign-name

NaneTr ans stands for Name Translation. NaneTr ans directives translate virtual
URLs to physical directories on your server. For example, the URL

http://ww. test.conlsone/file.htnl

could be translated to the full file-system path

/ usr/ net scape/ server 4/ docs/ sone/file. htm

NanmeTr ans directives should appear in the default object. If there is more than
one NaneTr ans directive in an object, the server executes each one in order
until one succeeds.

The following NameTrans-class functions are described in detail in this section:
= assi gn- nane tells the server to process directives in a named object.

= docunent -root translates a URL into a file system path by replacing the
http:// server-nanel part of the requested resource with the document
root directory.

= hone- page translates a request for the server’s root home page (/) to a
specific file.

= pfx2dir translates any URL beginning with a given prefix to a file system
directory and optionally enables directives in an additional named object.

= redirect redirects the client to a different URL.

= uni x- hone translates a URL to a specified directory within a user’s home
directory.

Applicable in NanmeTr ans-class directives.

Chapter 3, Predefined SAFs and the Request Handling Process 65

NameTrans Stage

The assi gn- name function specifies the name of an object in obj . conf that
matches the current request. The server then processes the directives in the
named object in preference to the ones in the default object.

For example, consider the following directive in the default object:

NaneTrans fn=assi gn- name nanme=personnel frone/ personnel
Let's suppose the server receives a request for http: // server - nanel
per sonnel . After processing this NameTr ans directive, the server looks for an

object named per sonnel in obj . conf, and continues by processing the
directives in the per sonnel object.

The assi gn- name function always returns REQ NOACTI ON,

Parameters
from is a wildcard pattern that specifies the path to be affected.
nane specifies an additional named object in obj . conf whose
directives will be applied to this request.
fi nd- pat hi nf o- New in iPlanet Web Server 4.1.
forward

(optional) makes the server look for the PATHINFO
forward in the path right after the ntrans-base instead of
backward from the end of path as the server function
assi gn- nane does by default.

The value you assign to this parameter is ignored. If you do
not wish to use this parameter, leave it out.

The fi nd- pat hi nf o- f or war d parameter is ignored if
the nt r ans- base parameter is not set in r g- >var s. By
default, nt r ans- base is set.

This feature can improve performance for certain URLs by
reducing the number of stats performed.

66 NSAPI Programmer’s Guide

NameTrans Stage

nost at New in iPlanet Web Server 4.1.

(optional) prevents the server from performing a stat on a
specified URL whenever possible.

The effect of nost at =" vi rt ual - pat h" in the

NameTr ans function assi gn- nane is that the server
assumes that a stat on the specified vi r t ual - pat h will
fail. Therefore, use nost at only when the path of the

vi r t ual - pat h does not exist on the system, for example,
for NSAPI plugin URLs, to improve performance by
avoiding unnecessary stats on those URLSs.

When the default Pat hCheck server functions are used,
the server does not stat for the paths / nt rans- base/

vi rtual - pat hand/ nt rans- basel vi rt ual - pat hl *
if nt rans- base is set (the default condition); it does not
stat for the URLs / vi rt ual - pat hand / vi r t ual - pat h/
* if nt rans- base is not set.

Example

This NanmeTrans directive is in the default object.
NaneTrans fn=assi gn- name nane=per sonnel fron¥/ alb/c/pers

<Cbj ect name=per sonnel >

...additional directives..

</ Obj ect >

NanmeTrans fn="assi gn-nanme" from="/perf" find-pathinfo-
forward="" name="perf"

NaneTrans fn="assign-nanme" from="/nsfc" nostat="/nsfc"
name="nsfc"

document-root

Applicable in NanmeTr ans-class directives.

The docunent - r oot function specifies the root document directory for the
server. If the physical path has not been set by a previous NaneTr ans function,
the http: // server - nanel part of the path is replace by the physical
pathname for the document root.

When the server receives a request for http:// server - nanel somepat h/
somefi | e, the document - r oot function replaces http:// server - nanel
with the value of its r oot parameter. For example, if the document root

Chapter 3, Predefined SAFs and the Request Handling Process 67

NameTrans Stage

directory is / usr/ net scape/ ser ver 4/ docs, then when the server receives a
request for http:// server-nanel a/ b/ file. htnl, the docunent - r oot
function translates the pathname for the requested resource to / usr/

net scape/ server4/docs/a/b/file.htn.

This function always returns REQ PROCEED. NameTr ans directives listed after
this will never be called, so be sure that the directive that invokes docunent -
r oot is the last NameTr ans directive.

There can be only one root document directory. To specify additional
document directories, use the pf x2di r function to set up additional path name
translations.

Parameters
r oot is the file system path to the server’s root document
directory.

Examples
NaneTrans fn=docunent-root root=/usr/netscapel/server4/docs

Seealso pfxa2dir

home-page
Applicable in NaneTr ans-class directives.

The horre- page function specifies the home page for your server. Whenever a
client requests the server’'s home page (/), they’ll get the document specified.

Parameters
pat h is the path and name of the home page file. If pat h starts
with a slash (/), it is assumed to be a full path to a file.

This function sets the server’s pat h variable and returns
REQ PROCEED. DHN - This looks like it only works
for Unix? If pat h does not start with a slash (/), it is
appended to the URI and the function returns
REQ_NQACTI ON continuing on to the other NameTrans
directives.

Examples
NaneTrans fn="hone-page" path="honepage. htm "

68 NSAPI Programmer’s Guide

pfx2dir

Parameters

Examples

NameTrans Stage

NaneTrans fn="hone- page" path="/httpd/ docs/honme. htm "

Applicable in NanmeTr ans-class directives.

The pf x2di r function replaces a directory prefix in the requested URL with a
real directory name. It also optionally allows you to specify the name of an
object that matches the current request. (See the discussion of assi gn- nane for
details of using named objects)

from

dir

name

fi nd- pat hi nf o-
forward

is the URI prefix to convert. It should not have a trailing
slash (/).

is the local file system directory path that the prefix is
converted to. It should not have a trailing slash (/).

(optional) specifies an additional named object in
obj . conf whose directives will be applied to this request.

New in iPlanet Web Server 4.1.

(optional) makes the server look for the PATHINFO
forward in the path right after the ntrans-base instead of
backward from the end of path as the server function
pf x2di r does by default.

The value you assign to this parameter is ignored. If you do
not wish to use this parameter, leave it out.

The fi nd- pat hi nf o- f or war d parameter is ignored if
the nt r ans- base parameter is not set in r g- >vars. By
default, nt r ans- base is set.

This feature can improve performance for certain URLs by
reducing the number of stats performed.

In the first example, the URL http:// server-nanel cgi - bi n/ resour ce
(such as http://x.y.z/cgi-bin/test.cgi) is translated to the physical
pathname / ht t pd/ cgi - | ocal / resour ce, (such as / htt pd/ cgi -1 ocal /
test. cgi) and the server also starts processing the directives in the object

named cgi .

NaneTrans fn=pfx2dir frone/ cgi-bin dir=/httpd/cgi-Iocal

name=cgi

Chapter 3, Predefined SAFs and the Request Handling Process 69

NameTrans Stage

In the second example, the URL htt p: // server - nanel i cons/ r esour ce
(such as http://x.y.zlicons/happy/sniley.gif)is translated to the
physical pathname / user s/ ni kki /i mages/ resour ce, (such as / user s/
ni kki /i mages/sniley.gif)

NaneTrans fn=pfx2dir frome/icons/happy dir=/users/nikki/
i mages

The third example shows the use of the fi nd- pat hi nf o-f or war d parameter.
The URL htt p:// server-nanel cgi - bi n/ resour ce is translated to the
physical pathname / expor t/ home/ cgi - bi n/ resour ce.

NanmeTrans fn="pfx2dir" find-pathinfo-forward="" fron="/cgi-
bi n" dir="/export/home/cgi-bin" name="cgi"

redirect
Applicable in NanmeTr ans-class directives.
The redi rect function lets you change URLs and send the updated URL to the
client. When a client accesses your server with an old path, the server treats the
request as a request for the new URL.
Parameters
from specifies the prefix of the requested URI to match.
url (maybe optional) specifies a complete URL to return to the
client. If you use this parameter, don’t use ur | - prefi x
(and vice-versa).
url -prefix (maybe optional) is the new URL prefix to return to the
client. The f r omprefix is simply replaced by this URL
prefix. If you use this parameter, don’t use ur | (and vice-
versa).
escape (optional) is a flag which tells the server to
util _uri_escape the URL before sending it. It should
be yes or no. The default is yes.
Examples

70 NSAPI Programmer’s Guide

unix-home

Parameters

NameTrans Stage

In the first example, any request for htt p: / / ser ver - nanel what ever is
translated to a request for htt p: // t npser ver/ what ever.

NaneTrans fn=redirect frome/ url-prefix=http://tnpserver

In the second example, any request for htt p: // server - nane/
t oopopul ar/ what ever is translated to a request for htt p: // bi gger/
better/stronger/ nmor epopul ar/ what ever.

NaneTrans fn=redirect frome/ toopopular url=http://bigger/
better/stronger/ nor epopul ar

Applicable in NanmeTr ans-class directives.

Unix Only. The uni x- hone function translates user names (typically of the
form ~username) into the user’s home directory on the server's Unix machine.
You specify a URL prefix that signals user directories. Any request that begins
with the prefix is translated to the user’s home directory.

You specify the list of users with either the / et ¢/ passwd file or a file with a
similar structure. Each line in the file should have this structure (elements in the
passwd file that are not needed are indicated with *):

usernane: *: *: groupi d: *: honedir: *

If you want the server to scan the password file only once at startup, use the
Init-class function i ni t - uhorre.

from is the URL prefix to translate, usually “/ ~".

subdir is the subdirectory within the user's home directory that
contains their web documents.

pwile (optional) is the full path and file name of the password file

if it is different from / et ¢/ passwd.

name (optional) specifies an additional named object whose
directives will be applied to this request.

Chapter 3, Predefined SAFs and the Request Handling Process 71

PathCheck Stage

Examples

NameTrans fn=unix-home from=/~ subdir=public_html

NameTrans fn=unix-home from /~ pwfile=/mydir/passwd
subdir=public_html

SeeAlso init-uhone, find-links

PathCheck Stage

Pat hCheck directives check the local file system path that is returned after the
NanmeTr ans step. The path is checked for things such as CGI path information
and for dangerous elements such as/./and /. ./ and//, and then any access
restriction is applied.

If there is more than one Pat hCheck directive, each of the functions are
executed in order.

The following PathCheck-class functions are described in detail in this section:

72 NSAPI Programmer’s Guide

cert2user determines the authorized user from the client certificate.
check-acl checks an access control list for authorization.

deny- exi st ence indicates that a resource was not found.
find-index locates a default file when a directory is requested.
find-1inks denies access to directories with certain file system links

fi nd- pat hi nf o locates extra path info beyond the file name for the
PATH_INFO CGI environment variable.

get-client-cert gets the authenticated client certificate from the SSL3
session.

| oad- confi g finds and loads extra configuration information from a file in
the requested path

nt - uri - cl ean denies access to requests with unsafe path names by
indicating not found.

nt cgi check looks for a CGI file with a specified extension.
requi r e- aut h denies access to unauthorized users or groups.
ssl - check checks the secret keysize.

ssl-logout invalidates the current SSL session in the server’s SSL session
cache.

cert2user

Parameters

PathCheck Stage

= uni x-uri-cl ean denies access to requests with unsafe path names by

indicating not found.

Applicable in Pat hCheck-class directives.

The cert 2user function maps the authenticated client certificate from the SSL3
session to a user name, using the certificate-to-user mappings in the user
database specified by user db.

userdb

makef r onbasi c

require

met hod

names the user database from which to obtain the
certificate.

tells the function to establish a certificate-to-user mapping.
If makef r onbasi ¢ is present and is not 0, the directive
uses basic password authentication to authenticate the user
and to then create a new certificate-to-user mapping in the
specified user database if no such mapping has already
been created there.

The server allows the certificate-to-user mapping to be
created automatically by:

= Obtaining and verifying a certificate from the user

= Obtaining a user name and password using WWW basic
authentication.

= Creating a mapping from that certificate to that user
(provided both check out ok).

governs the return value. If the certificate cannot be
mapped successfully to a user name, and the value of
requi re is 0, the function returns REQ_NOACTI ON
allowing the processing of the request to continue. But if
the value of r equi r e is not 0, the function returns
REQ_ABCRTED and sets the protocol status to 403
FORBI DDEN, causing the request to fail and the client to
be given the FORBI DDEN status. The default value of
requireisl.

specifies a wildcard pattern for the HTTP methods for
which this function will be applied. If met hod is absent,
the function is applied for any method.

Chapter 3, Predefined SAFs and the Request Handling Process 73

PathCheck Stage

Examples
Map the client cert to a user using this userdb.
If a mapping is not present, the request fails.
Pat hCheck fn="cert2user" userdb="/usr/nnetscapel/server4/
aut hdb/ defaul t" require="1"

check-acl
Applicable in Pat hCheck-class directives.
The check- acl function specifies an Access Control List (ACL) to use to check
whether the client is allowed to access the requested resource. An access
control list contains information about who is or is not allowed to access a
resource, and under what conditions access is allowed.
Regardless of the order of Pat hCheck directives in the object, check- acl
functions are executed first. They cause user authentication to be performed, if
required by the specified ACL, and will also update the access control state.
Parameters
acl is the name of an Access Control List.
shexp (optional) is a wildcard pattern that specifies the path for
which to apply the ACL.
bong-file (optional) is the path name for a file that will be sent if this
ACL denies access.
Examples

Pat hCheck fn=check-acl acl="*HRonl y*"

deny-existence

Applicable in Pat hCheck-class directives.

The deny- exi st ence function sends a “not found” message when a client tries
to access a specified path. The server sends “not found” instead of “forbidden,”
so the user cannot tell whether the path exists or not.

Use this function inside a < i ent > block to deny the existence of a resource
to specific users. For example, these lines deny existence of all resources to any
user not in the per sonal . comdomain:

74 NSAPI Programmer’s Guide

Parameters

Examples

find-index

Parameters

Examples

PathCheck Stage

<Cient dns=*~.personal.con>
Pat hCheck f n=deny-exi stence

</dient>

pat h (optional) is a wildcard pattern of the file-system path to
hide. If the path does not match, the function does nothing
and returns REQ_NOACTI ON. If the path is not provided, it
is assumed to match.

bong- nmsg (optional) specifies a file to send rather than responding

with the “not found” message. It is a full file-system path.

Pat hCheck fn=deny-exi stence path=/usr/ netscape/ server4/docs/
private

Pat hCheck fn=deny-exi stence bong-nmsg=/svr/ nsg/ go- away. ht m

Applicable in Pat hCheck-class directives.

The fi nd-i ndex function investigates whether the requested path is a
directory. If it is, the function searches for an index file in the directory, and
then changes the path to point to the index file. If no index file is found, the
server generates a directory listing.

Note that if the file obj . conf has a NaneTr ans directive that calls hone- page,
and the requested directory is the root directory, then the home page rather
than the index page, is returned to the client.

The fi nd-i ndex function does nothing if there is a query string, if the HTTP
method is not GET, or if the path is that of a valid file.

i ndex- nanes is a comma-separated list of index file names to look for.
Use spaces only if they are part of a file name. Do not
include spaces before or after the commas. This list is case-
sensitive if the file system is case-sensitive.

Pat hCheck fn=find-i ndex i ndex-nanes=i ndex. htnml , hone. htm

Chapter 3, Predefined SAFs and the Request Handling Process 75

PathCheck Stage

find-links

Applicable in Pat hCheck-class directives.

Unix Only. The fi nd- i nks function searches the current path for symbolic

or hard links to other directories or file systems. If any are found, an error is

returned. This function is normally used for directories that are not trusted

(such as user home directories). It prevents someone from pointing to

information that should not be made public.

Parameters

di sabl e is a character string of links to disable:
« his hard links
= s issoft links
= 0 allows symbolic links from user home directories only

if the user owns the target of the link.

dir is the directory to begin checking. If you specify an
absolute path, any request to that path and its
subdirectories is checked for symbolic links. If you specify
a partial path, any request containing that partial path is
checked for symbolic links. For example, if you use /
user/ and a request comes in for sone/ user/
di rect ory, then that directory is checked for symbolic
links.

Examples

Pat hCheck fn=find-Iinks disable=sh dir=/foreign-dir
Pat hCheck fn=find-Iinks disable=so dir=public_htmn

SeeAlso i nit-uhone, unix-hone
find-pathinfo

Applicable in Pat hCheck-class directives.

The fi nd- pat hi nf o function finds any extra path information after the file
name in the URL and stores it for use in the CGI environment variable
PATH_INFO.

76 NSAPI Programmer’s Guide

PathCheck Stage

Parameters
fi nd- pat hi nf o- New in iPlanet Web Server 4.1.

forward (optional) makes the server look for the PATHINFO
forward in the path right after the ntrans-base instead of
backward from the end of path as the server function
fi nd- pat hi nf o does by default.

The value you assign to this parameter is ignored. If you do
not wish to use this parameter, leave it out.

The fi nd- pat hi nf o- f or war d parameter is ignored if
the nt r ans- base parameter is not set inr g- >var s
when the server function f i nd- pat hi nf o is called. By
default, nt r ans- base is set.

This feature can improve performance for certain URLs by
reducing the number of stats performed in the server
function f i nd- pat hi nf o.

On NT, this feature can also be used to prevent the
PATHINFO from the server URL normalization process
(changing '\’ to /") when the Pat hCheck server function
fi nd- pat hi nf o is used. Some double-byte characters
have hex values that may be parsed as URL separator
characters such as \ or ~. Using the fi nd- pat hi nf o-

f or war d parameter can sometimes prevent incorrect
parsing of URLs containing double-byte characters.

Examples
Pat hCheck fn=fi nd- pat hi nfo

Pat hCheck fn=find-pathi nfo find-pat hinfo-forward=""

get-client-cert

Applicable in Pat hCheck-class directives.

The get - cli ent - cert function gets the authenticated client certificate from
the SSL3 session. It can apply to all HTTP methods, or only to those that match
a specified pattern. It only works when SSL is enabled on the server.

If the certificate is present or obtained from the SSL3 session, the function
returns REQ _NOACTI ON, allowing the request to proceed, otherwise it returns
REQ_ABORTED and sets the protocol status to 403 FORBI DDEN, causing the
request to fail and the client to be given the FORBI DDEN status.

Chapter 3, Predefined SAFs and the Request Handling Process 77

PathCheck Stage

Parameters
dor equest
require
nmet hod
Examples

controls whether to actually try to get the certificate, or just
test for its presence. If dor equest is absent the default
value is 0.

= 1 tells the function to redo the SSL3 handshake to get a
client certificate, if the server does not already have the
client certificate. This typically causes the client to
present a dialog box to the user to select a client
certificate. The server may already have the client
certificate if it was requested on the initial handshake,
or if a cached SSL session has been resumed.

= 0 tells the function not to redo the SSL3 handshake if
the server does not already have the client certificate.

If a certificate is obtained from the client and verified
successfully by the server, the ASCII base64 encoding of
the DER-encoded X.509 certificate is placed in the
parameter aut h- cert in the Request - >var s pblock,
and the function returns REQ PROCEED, allowing the
request to proceed.

controls whether failure to get a client certificate will abort
the HTTP request. If r equi r e is absent the default value
is 1.

= 1 tells the function to abort the HTTP request if the
client certificate is not present after dor equest is
handled. In this case, the HTTP status is set to
PROTOCOL_FORBI DDEN, and the function returns
REQ ABORTED.

= 0 tells the function to return REQ_NOACTI ON if the
client certificate is not present after dorequest is
handled.

(optional) specifies a wildcard pattern for the HTTP
methods for which the function will be applied. If met hod
is absent, the function is applied to all requests.

Get the client certificate fromthe session.
If a certificate is not already associated with the

session,

request one.

The request fails if the client does not present a

valid certificate.

Pat hCheck fn="get-client-cert" dorequest="1"

78 NSAPI Programmer’s Guide

load-config

PathCheck Stage

Applicable in Pat hCheck-class directives.

The | oad- confi g function searches for configuration files in document
directories and adds the file’s contents to the server’s existing configuration.
These configuration files (also known as dynamic configuration files) specify
additional access control information for the requested resource. Depending on
the rules in the dynamic configuration files, the server might or might not allow
the client to access the requested resource.

Each directive that invokes | oad- confi g is associated with a base directory,
which is either stated explicitly through the basedi r parameter or derived from
the root directory for the requested resource. The base directory determines
two things:

= the top-most directory for which requests will invoke this call to the | oad-
confi g function.

For example, if the base directory is D: / Net scape/ Ser ver 4/ docs/ ni kki /
, then only requests for resources in this directory or its subdirectories (and
their subdirectories and so on) trigger the search for dynamic configuration
files. A request for the resource D: / Net scape/ Ser ver 4/ docs/

somefil e. ht M does not trigger the search in this case, since the requested
resource is in a parent directory of the base directory.

= the top-most directory in which the server looks for dynamic configuration
files to apply to the requested resource.

If the base directory is D: / Net scape/ Ser ver 4/ docs/ ni kki / , the server
starts its search for dynamic configuration files in this directory. It may or
may not also search subdirectories (but never parent directories) depending
on other factors.

When you enable dynamic configuration files through the Server Manager
interface, the system writes additional objects with ppat h parameters into the
obj . conf file. If you manually add directives that invoke | oad- confi g to the
default object (rather than putting them in separate objects), the Server Manager
interface might not reflect your changes.

If you manually add Pat hCheck directives that invoke | oad- confi g to the file
obj . conf, put them in additional objects (created with the <OBJECT> tag)
rather than putting them in the default object. Use the ppat h attribute of the

Chapter 3, Predefined SAFs and the Request Handling Process 79

PathCheck Stage

OBJECT tag to specify the partial pathname for the resources to be affected by
the access rules in the dynamic configuration file. The partial pathname can be
any pathname that matches a pattern, which can include wildcard characters.

For example, the following <OBJECT> tag specifies that requests for resources
in the directory D: / Net scape/ Ser ver 4/ docs are subject to the access rules in
the file ny. nsconfi g.

<Cbj ect ppat h="D:/ Net scape/ Server 4/ docs/*">

Pat hCheck fn="I|oad-config" file="ny.nsconfig" descend=1
basedi r="D: / Net scape/ Ser ver 4/ docs"

</ Obj ect >

Note: If the ppat h resolves to a resource or directory that is higher in the
directory tree (or is in a different branch of the tree) than the base directory, the
| oad- confi g function is not invoked. This is because the base directory
specifies the highest-level directory for which requests will invoke the | oad-
conf i g function.

The | oad- confi g function returns REQ PROCEED if configuration files were
loaded, REQ ABORTED on error, or REQ NOACTI ON when no files are loaded.

Parameters

file (optional) is the name of the dynamic configuration file
containing the access rules to be applied to the requested
resource. If not provided, the file name is assumed to be
.nsconfig.

di sabl e-types (optional) specifies a wildcard pattern of types to disable
for the base directory, such as magnus-i nternal / cgi .
Requests for resources matching these types are aborted.

descend (optional) if present, specifies that the server should search
in subdirectories of this directory for dynamic configuration
files. For example, descend=1 specifies that the server
should search subdirectories. No descend parameter
specifies that the function should search only the base
directory.

80 NSAPI Programmer’s Guide

Examples

nt-uri-clean

Parameters

Examples

PathCheck Stage

basedir (optional) specifies base directory. This is the highest-level
directory for which requests will invoke the | oad- confi g
function and is also the directory where the server starts
searching for configuration files.

If basedi r is not specified, the base directory is assumed
to be the root directory that results from translating the
requested resource’s URL to a physical pathname. For
example, if the request was for htt p: / / server - nanme/
a/ b/ file.htm, the physical file name would be

/ docurment -root/alb/file. htm.

In this example, whenever the server receives a request for any resource
containing the substring secr et that resides in D: / Net scape/ Ser ver 4/ docs/
ni kki / or a subdirectory thereof, it searches for a configuration file called
checkaccess. nsconfi g.

The server starts the search in the directory D: / Net scape/ Ser ver 4/ docs/
ni kki , and searches subdirectories too. It loads each instance of
checkaccess. nsconfi g that it finds, applying the access control rules
contained therein to determine whether the client is allowed to access the
requested resource or not.

<Cbj ect ppath="*secret*">

Pat hCheck fn="I|oad-config" file="checkaccess.nsconfig"
basedi r =" D: / Net scape/ Server 4/ docs/ ni kki " descend="1"
</ Obj ect >

Applicable in Pat hCheck-class directives.

Windows NT Only. The nt - uri - ¢l ean function denies access to any resource
whose physical path contains\.\,\..\ or\\ (these are potential security
problems).

None.

Pat hCheck fn=nt-uri-clean

Chapter 3, Predefined SAFs and the Request Handling Process 81

PathCheck Stage

SeeAlso uni x-uri-cl ean

ntcgicheck

Applicable in Pat hCheck-class directives.
Windows NT Only. The nt cgi check function specifies the file name
extension to be added to any file name that does not have an extension, or to
be substituted for any file name that has the extension . cgi .

Parameters
ext ensi on is the replacement file extension.

Examples

Pat hCheck fn=ntcgi check extensi on=pl
SeeAlso init-cgi, send-cgi, send-w ncgi, send-shell cgi

require-auth
Applicable in Pat hCheck-class directives.

The r equi r e- aut h function allows access to resources only if the user or
group is authorized. Before this function is called, an authorization function
(such as basi c- aut h) must be called in an Aut hTr ans directive.

If a user was authorized in an Aut hTr ans directive, and the aut h- user
parameter is provided, then the user’s name must match the aut h- user
wildcard value. Also, if the aut h- gr oup parameter is provided, the authorized
user must belong to an authorized group which must match the aut h- user
wildcard value.

Parameters
pat h (optional) is a wildcard local file system path on which this
function should operate. If no path is provided, the
function applies to all paths.

aut h-type is the type of HTTP authorization used and must match the
auth-type from the previous authorization function in
AuthTrans. Currently, basi c is the only authorization type
defined.

82 NSAPI Programmer’s Guide

Examples

See Also

ssl-check

PathCheck Stage

real m is a string sent to the browser indicating the secure area (or
realm) for which a user name and password are requested.

aut h- user (optional) specifies a wildcard list of users who are allowed
access. If this parameter is not provided, then any user
authorized by the authorization function is allowed access.

aut h- group (optional) specifies a wildcard list of groups that are
allowed access.

Pat hCheck fn=require-auth auth-type=basic real m="Marketing
Pl ans" aut h- group=nkt g aut h-user =(j doe| j ohnd| j aned)

basi c-auth, basic-ncsa

Applicable in Pat hCheck-class directives. New in iPlanet Web Server 4.0.

If a restriction is selected that is not consistent with the current cipher settings
under Security Preferences, this function opens a popup dialog which warns
that ciphers with larger secret keysizes need to be enabled. This function is
designed to be used together with a Client tag to limit access of certain
directories to non-exportable browsers.

The function returns REQ NQACTI ON if SSL is not enabled, or if the secret -
keysi ze parameter is not specified. If the secret keysize for the current session
is less than the specified secr et - keysi ze and the bong-fi | e parameter is
not specified, the function returns REQ ABORTED with a status of
PROTOCOL_FORBI DDEN. If the bong file is specified, the function returns

REQ _PROCEED, and the pat h variable is set to the bong filename. Also, when a
keysize restriction is not met, the SSL session cache entry for the current session
is invalidated, so that a full SSL handshake will occur the next time the same
client connects to the server.

Requests that use ssl - check are not cacheable in the accelerator file cache if
ssl - check returns something other than REQ_NOACTI ON.

This function supersedes the key-t oosnal | Service-class function that was
used in Enterprise Server prior to release 4.0.

Chapter 3, Predefined SAFs and the Request Handling Process 83

PathCheck Stage

Parameters
secret - keysi ze (optional) is the minimum number of bits required in the
secret key.
bong-file (optional) is the name of a file (not a URI) to be served if
the restriction is not met
ssl-logout
Applicable in Pat hCheck-class directives.
ssl -1 ogout invalidates the current SSL session in the server’'s SSL session
cache. This does not affect the current request, but the next time the client
connects, a new SSL session will be created. If SSL is enabled, this function
returns REQ PROCEED after invalidating the session cache entry. If SSL is not
enabled, it returns REQ NQACTI ON.
Parameters

None.

unix-uri-clean

Applicable in Pat hCheck-class directives.

Unix Only. The uni x- uri - cl ean function denies access to any resource
whose physical path contains/./,/../ or// (these are potential security
problems).

Parameters
None.

Examples
Pat hCheck fn=uni x-uri-cl ean

SeeAlso nt-uri-clean

84 NSAPI Programmer’s Guide

ObjectType Stage

ObjectType Stage

force-type

Obj ect Type directives determine the MIME type of the file to send to the client
in response to a request. MIME attributes currently sent are t ype, encodi ng,
and | anguage. The MIME type sent to the client as the value of the cont ent -
t ype header.

bj ect Type directives also set the t ype parameter, which is used by Ser vi ce
directives to determine how to process the request according to what kind of
content is being requested.

If there is more than one Obj ect Type directive in an object, all the directives
are applied in the order they appear. If a directive sets an attribute and later
directives try to set that attribute to something else, the first setting is used and
the subsequent ones ignored.

The obj . conf file almost always has an Obj ect Type directive that calls the
t ype- by- ext ensi on function. This function instructs the server to look in a
particular file (the MIME types file) to deduce the content type from the
extension of the requested resource.

The following Qoj ect Type-class functions are described in detail in this
section:

= force-type sets the content-type header for the response to a specific
type.
= set-defaul t-type allows you to define a default char set, cont ent -

encodi ng, and cont ent - | anguage for the response being sent back to the
client.

= shtnl - hackt ype requests that . ht mand . ht nl files are parsed for server-
parsed html commands.

= type-by-exp sets the content-type header for the response based on the
requested path.

= type-by-extension sets the content-type header for the response based
on the files extension and the MIME types database.

Applicable in Qbj ect Type-class directives.

The f or ce- t ype function assigns a type to requests that do not already have a
MIME type. This is used to specify a default object type.

Chapter 3, Predefined SAFs and the Request Handling Process 85

ObjectType Stage

Parameters

Examples

See Also

Make sure that the directive that calls this function comes last in the list of

Obj ect Type directives so that all other Qbj ect Type directives have a chance to
set the MIME type first. If there is more than one bj ect Type directive in an
object, all the directives are applied in the order they appear. If a directive sets
an attribute and later directives try to set that attribute to something else, the
first setting is used and the subsequent ones ignored.

type (optional) is the type assigned to a matching request (the
cont ent - t ype header).

enc (optional) is the encoding assigned to a matching request
(the cont ent - encodi ng header).

| ang (optional) is the language assigned to a matching request
(the cont ent - | anguage header).

char set (optional) is the character set for the magnus- char set
parameter in r g- >sr vhdr s. If the browser sent the
Accept - char set header or its User - agent is mozilla/
1.1 or newer, then append “; char set =charset” to
content-type, where char set is the value of the magnus-
char set parameter in r g- >srvhdrs.

hj ect Type fn=force-type type=text/plain
hj ect Type fn=force-type | ang=en_US

| oad-types, type-by-extension, type-by-exp

set-default-type

Applicable in Qbj ect Type-class directives. New in iPlanet Web Server 4.1.

This function allows you to define a default char set, cont ent - encodi ng, and
cont ent - | anguage for the response being sent back to the client.

If the char set, cont ent - encodi ng, and cont ent - | anguage have not been
set for a response, then just before the headers are sent the defaults defined by
set - def aul t -t ype are used. Note that by placing this function in different
objects in obj . conf, you can define different defaults for different parts of the
document tree.

86 NSAPI Programmer’s Guide

Parameters

Example

enc

| ang

char set

ObjectType Stage

(optional) is the encoding assigned to a matching request
(the cont ent - encodi ng header).

(optional) is the language assigned to a matching request
(the cont ent - | anguage header).

(optional) is the character set for the magnus- char set
parameter in r g- >sr vhdr s. If the browser sent the
Accept - char set header or its User - agent is mozilla/
1.1 or newer, then append “; char set =charset” to
content-type, where char set is the value of the magnus-
char set parameter inr g- >srvhdrs.

hj ect Type fn="set-default-type" charset="iso_8859-1"

shtml-hacktype

Parameters

Examples

type-by-exp

Applicable in Qbj ect Type-class directives.

The sht nl - hackt ype function changes the content-type of any . ht mor . ht m
file to magnus-i nt er nal / par sed- ht M and returns REQ PROCEED. This
provides backward compatibility with server-side includes for files with . ht mor
.html extensions. The function may also check the execute bit for the file on
Unix systems. The use of this function is not recommended.

exec- hack

(Unix only, optional) tells the function to change the
content-type only if the execute bit is enabled. The value of
the parameter is not important. It need only be provided.
You may use exec- hack=t r ue.

hj ect Type fn=shtn - hackt ype exec-hack=true

Applicable in Qbj ect Type-class directives.

Chapter 3, Predefined SAFs and the Request Handling Process 87

ObjectType Stage

The t ype- by- exp function matches the current path with a wildcard
expression. If the two match, the t ype parameter information is applied to the
file. This is the same as t ype- by- ext ensi on, except you use wildcard patterns
for the files or directories specified in the URLSs.

Parameters
exp is the wildcard pattern of paths for which this function is
applied.

type (optional) is the type assigned to a matching request (the
cont ent - t ype header).

enc (optional) is the encoding assigned to a matching request
(the cont ent - encodi ng header).

| ang (optional) is the language assigned to a matching request
(the cont ent - | anguage header).

char set (optional) is the character set for the magnus- char set
parameter in r g- >sr vhdr s. If the browser sent the
Accept - char set header or its User - agent is mozilla/
1.1 or newer, then append “; char set =charset” to
content-type, where char set is the value of the magnus-
char set parameter inr g- >srvhdrs.

Examples
hj ect Type fn=type-by-exp exp=*.test type=application/htm

SeeAlso | oad-types, type-by-extension, force-type

type-by-extension
Applicable in Qbj ect Type-class directives.

This function instructs the server to look in a table of MIME type mappings to
find the MIME type of the requested resource according to the extension of the
requested resource. The MIME type is added to the cont ent - t ype header sent
back to the client.

The table of MIME type mappings is created during the server’s I ni t stage by
the | oad- t ypes function, which loads a MIME types file and creates the
mappings. The MIME types file is usually called ni me. t ypes, but you can
specify a different file by providing a different file name to | oad- t ypes.

For example, the following two lines are part of the MIME types file:

88 NSAPI Programmer’s Guide

Service Stage

type=text/htm ext s=htm ht m
type=text/plain ext s=t xt

If the extension of the requested resource is ht mor ht m , the t ype- by-
ext ensi on file sets the type to t ext/ ht nl . If the extension is . t xt , the
function sets the type to t ext / pl ai n.

For more information about MIME types, see Appendix C, “MIME Types.”

Parameters
None.

Examples
hj ect Type fn=type-by-extension

SeeAlso | oad-types, type-by-exp, force-type

Service Stage

The Servi ce class of functions sends the response data to the client.

Every Ser vi ce directive has the following optional parameters to determine
whether the function is executed. All the optional parameters must match the
current request for the function to be executed.

* type

(optional) specifies a wildcard pattern of MIME types for which this
function will be executed. The magnus-i nt er nal / * MIME types are used
only to select a Service-class function to execute.

e et hod

(optional) specifies a wildcard pattern of HTTP methods for which this
function will be executed. Common HTTP methods are GET, HEAD, and
POST.

*® query
(optional) specifies a wildcard pattern of query strings for which this
function will be executed.

If there is more than one Ser vi ce-class function, the first one matching the
optional parameters above is executed.

Chapter 3, Predefined SAFs and the Request Handling Process 89

Service Stage

By default, the server sends the requested file to the client by calling the send-
fil e function. The directive that sets the default is:

Servi ce net hod="(GET| HEAD| POST) " type="*~magnus-i nternal /*" fn="send-file"

This directive usually comes last in the set of Ser vi ce-class directives to give
all other Service directives a chance to be invoked. This directive is invoked if
the method of the request is GET, HEAD, or PCST, and the type does not start
with magnus- i nt er nal / . Note here that the pattern *~ means “does not
match.” For a list of characters that can be used in patterns, see Appendix D,
“Wildcard Patterns.”

The following Service-class functions are described in detail in this section:

90 NSAPI Programmer’s Guide

add- f oot er appends a footer specified by a filename or URL to a an HTML
file.

add- header prepends a header specified by a filename or URL to an HTML
file.

append-trail er appends text to the end of an HTML file.
i mmgemap handles server-side image maps.

i ndex- conmon generates a fancy list of the files and directories in a
requested directory.

i ndex- si npl e generates a simple list of files and directories in a requested
directory.

key-toosmal | indicates to the client that the provided certificate key size is
too small to accept.

l'i st-dir lists the contents of a directory.

make- di r creates a directory.

par se- ht ml parses an HTML file for server-parsed html commands.
quer y- handl er handles the HTML ISINDEX tag.

renove- di r deletes an empty directory.

renmove-fil e deletes a file.

rename-fil e renames a file.

send-cgi sets up environment variables, launches a CGI program, and
sends the response to the client.

send-fil e sends a local file to the client.

send-r ange sends a range of bytes of a file to the client.

send-shel | cgi sets up environment variables, launches a shell CGI
program, and sends the response to the client.

send-wi ncgi sets up environment variables, launches a WinCGI program,
and sends the response to the client.

add-footer

Parameters

Examples

See Also

add-header

Service Stage

= upl oad-fil e uploads and saves a file.

Applicable in Ser vi ce-class directives. New in iPlanet Web Server 4.0.

This function appends a footer to an HTML file that is sent to the client. The
footer is specified either as a filename or a URI -- thus the footer can be
dynamically generated. To specify static text as a footer, use the append-
trail er function.

file (optional) The pathname to the file containing the footer.
Specify either fil e oruri.

By default the pathname is relative. If the pathname is
absolute, pass the NSI nt AbsFi | ePat h parameter as yes.

uri (optional) A URI pointing to the resource containing the
footer. Specify either fil e oruri .
NSI nt AbsFi | ePat h (optional) if the file parameter is specified, the

NSI nt AbsFi | ePat h parameter determines whether the
file name is absolute or relative. The default is relative. Set
the value to yes to indicate an absolute file path.

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Service type=text/htm nethod=CET fn=add-f oot er
file="footers/footerl.htm"

Service type=text/htm method=CGET fn=add-footer file="D:/
net scape/ server4/footers/footerl. htm"
NSI nt AbsFi | ePat h="yes"

append-trail er, add-header

Applicable in Ser vi ce-class directives. New in iPlanet Web Server 4.0.

Chapter 3, Predefined SAFs and the Request Handling Process 91

Service Stage

This function prepends a header to an HTML file that is sent to the client. The
header is specified either as a filename or a URI -- thus the header can be
dynamically generated.

Parameters
file (optional) The pathname to the file containing the header.
Specify either fil e oruri .
By default the pathname is relative. If the pathname is
absolute, pass the NSI nt AbsFi | ePat h parameter as yes.
uri (optional) A URI pointing to the resource containing the
header. Specify either fil e oruri .
NSI nt AbsFi | ePat h (optional) if the file parameter is specified, the
NSI nt AbsFi | ePat h parameter determines whether the
file name is absolute or relative. The default is relative. Set
the value to yes to indicate an absolute file path.
type optional parameter common to all Service-class functions
met hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions
Examples

Service type=text/htm nethod=CET fn=add- header
fil e="headers/headerl. htm"

Service type=text/htm nmethod=CGET fn=add-footer file="D:/
net scape/ server 4/ header s/ header 1. ht m "
NSI nt AbsFi | ePat h="yes"

SeeAlso add-footer, append-trailer

append-trailer

Applicable in Ser vi ce-class directives.

The append-trai | er function sends an HTML file and appends text to the
end. It only appends text to HTML files. This is typically used for author
information and copyright text. The date the file was last modified can be
inserted.

Returns REQ ABORTED if a required parameter is missing, if there is extra path
information after the file name in the URL, or if the file cannot be opened for
read-only access.

92 NSAPI Programmer’s Guide

Service Stage

Parameters

trailer is the text to append to HTML documents. The string
: LASTMOD: is replaced by the date the file was last
modified; you must also specify a time format with
ti mef nt . The string is unescaped with
util _uri_unescape before being sent. The text can
contain HTML tags and can be up to 512 characters long
after unescaping and inserting the date.

ti mefnt (optional) is a time format string for : LASTMOD: . For
details about time formats refer to Appendix E, “Time
Formats.” If t i mef nt is not provided, : LASTMOD: will
not be replaced with the time.

type optional parameter common to all Service-class functions
met hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Examples
Service type=text/htm method=CGET fn=append-trailer
trail er="<hr><ing src=/1o0go.gi f> Copyright 1999"
Add a trailer with the date in the format: MM DD YY

Service type=text/htm method=CGET fn=append-trailer
timefnt ="9%" trailer="<HR>File | ast updated on: :LASTMOD: "

See Also add-footer, add-header

Imagemap
Applicable in Ser vi ce-class directives.
The i magemap function responds to requests for imagemaps. Imagemaps are
images which are divided into multiple areas that each have an associated URL.
The information about which URL is associated with which area is stored in a
mapping file.

Parameters

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Chapter 3, Predefined SAFs and the Request Handling Process 93

Service Stage

Examples
Servi ce type=nmagnus-internal /i mgemap nethod=(GET| HEAD)
f n=i magenmap

index-common

Applicable in Ser vi ce-class directives.

The i ndex- conmon function generates a fancy (or common) list of files in the
requested directory. The list is sorted alphabetically. Files beginning with a
period (.) are not displayed. Each item appears as an HTML link. This function
displays more information than i ndex- si npl e including the size, date last
modified, and an icon for each file. It may also include a header and/or readme
file into the listing.

The 1 ni t -class function ci ndex-i ni t specifies the format for the index list,
including where to look for the images.

If obj . conf contains a call to i ndex- comrmon in the Ser vi ce stage, it must
initialize fancy (or common) indexing by invoking ci ndex-i ni t during the
I nit stage.

Indexing occurs when the requested resource is a directory that does not
contain an index file or a home page, or no index file or home page has been
specified by the functions fi nd-i ndex or hone- page.

The icons displayed are . gi f files dependent on the cont ent - t ype of the file:

"text/*" text.gif

"i mage/ *" i mage. gi f
"audi o/ *" sound. gi f
"vi deo/ *" nmovi e. gi f
"application/octet- binary.gif
streant

directory menu. gi f
all others unknown. gi f

94 NSAPI Programmer’s Guide

Parameters

Examples

See Also

index-simple

Service Stage

header (optional) is the path (relative to the directory being
indexed) and name of a file (HTML or plain text) which is
included at the beginning of the directory listing to
introduce the contents of the directory. The file is first tried
with . ht M added to the end. If found, it is incorporated
near the top of the directory list as HTML. If the file is not
found, then it is tried without the . ht M and incorporated
as preformatted plain text (bracketed by <PRE> and).

readne (optional) is the path (relative to the directory being
indexed) and name of a file (HTML or plain text) to append
to the directory listing. This file might give more
information about the contents of the directory, indicate
copyrights, authors, or other information. The file is first
tried with . ht M added to the end. If found, it is
incorporated at the bottom of the directory list as HTML. If
the file is not found, then it is tried without the . ht m and
incorporated as preformatted plain text (enclosed by
<PRE> and </ PRE>).

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Servi ce fn=i ndex-comon type=magnus-internal/directory
met hod=(GET| HEAD) header =hdr readne=rdne.t xt

cindex-init, index-sinple, find-index, home-page

Applicable in Ser vi ce-class directives.

The i ndex- si npl e function generates a simple index of the files in the
requested directory. It scans a directory and returns an HTML page to the
browser displaying a bulleted list of the files and directories in the directory.
The list is sorted alphabetically. Files beginning with a period (.) are not
displayed. Each item appears as an HTML link.

Indexing occurs when the requested resource is a directory that does not
contain either an index file or a home page, or no index file or home page has
been specified by the functions fi nd- i ndex or home- page.

Chapter 3, Predefined SAFs and the Request Handling Process 95

Service Stage

Parameters
type optional parameter common to all Service-class functions
met hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Examples

Servi ce type=nmagnus-internal /directory fn=index-sinple

SeeAlso cindex-init, index-commbn

key-toosmall
Applicable in Ser vi ce-class directives. This function is deprecated in iPlanet
Web Server 4.x. It is replaced by the PathCheck-class SAF ssl - check.
The key-toosnal | function returns a message to the client specifying that the
secret key size for SSL communications is too small. This function is designed to
be used together with a d i ent tag to limit access of certain directories to non-
exportable browsers.
Parameters
type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions
Examples
<Cbj ect ppat h=/ nmydocs/ secret/*>
<Cient secret-keysi ze=40)
Servi ce fn=key-toosnall
</Cient>
</ Obj ect >
list-dir

Applicable in Ser vi ce-class directives.

The l'i st-dir function returns a sequence of text lines to the client in
response to a request whose method is INDEX. The format of the returned lines
is:

96 NSAPI Programmer’s Guide

Parameters

Examples

make-dir

Service Stage

nane type size m netype

The nane field is the name of the file or directory. It is relative to the directory
being indexed. It is URL-encoded, that is, any character might be represented
by %x, where xx is the hexadecimal representation of the character’s ASCII
number.

The t ype field is a MIME type such as t ext / ht m . Directories will be of type
directory. A file for which the server doesn’t have a type will be of type
unknown.

The si ze field is the size of the file, in bytes.

The nt i ne field is the numerical representation of the date of last modification
of the file. The number is the number of seconds since the epoch (Jan 1, 1970
00:00 UTC) since the last modification of the file.

When remote file manipulation is enabled in the server, the obj . conf file
contains a Ser vi ce-class function that calls | i st - di r for requests whose
method is | NDEX.

type optional parameter common to all Service-class functions
met hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Service fn=list-dir nethod="|NDEX"

Applicable in Ser vi ce-class directives.

The nake- di r function creates a directory when the client sends a request
whose method is MKDIR. The function can fail if the server can’t write to that
directory.

When remote file manipulation is enabled in the server, the obj . conf file
contains a Ser vi ce-class function that invokes nake- di r when the request
method is MKDI R.

Chapter 3, Predefined SAFs and the Request Handling Process 97

Service Stage

Parameters

Examples

parse-html

Parameters

Examples

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Service fn="make-dir" nethod=" MWDl R"

Applicable in Ser vi ce-class directives.

The par se- ht nl function parses an HTML document, scanning for embedded
commands. These commands may provide information from the server, include
the contents of other files, or execute a CGI program. Refer to Appendix F,
“Server-Parsed HTML Tags,” for server-parsed HTML commands.

opts (optional) are parsing options. The no- exec option is the
only currently available option—it disables the exec
command.

type optional parameter common to all Service-class functions

met hod optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Servi ce type=nagnus-internal /parsed-htm method=(GET| HEAD)
f n=par se-htm

query-handler

Parameters

Applicable in Ser vi ce-class directives.

The query- handl er function runs a CGI program instead of referencing the
path requested. This is used mainly to support the obsolete ISINDEX tag . If
possible, use an HTML form instead.

pat h is the full path and file name of the CGI program to run.

98 NSAPI Programmer’s Guide

Examples

remove-dir

Parameters

Examples

remove-file

Service Stage

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Servi ce query=* fn=query-handl er path=/http/cgi/do-grep
Servi ce query=* fn=query-handl er path=/http/cgi/proc-info

Applicable in Ser vi ce-class directives.

The renmove-di r function removes a directory when the client sends an
request whose method is RVDI R. The directory must be empty (have no files in
it). The function will fail if the directory is not empty or if the server doesn’t
have the privileges to remove the directory.

When remote file manipulation is enabled in the server, the obj . conf file
contains a Ser vi ce-class function that invokes r emove- di r when the request
method is RVDI R.

type optional parameter common to all Service-class functions
met hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Service fn="renove-dir" nethod="RVDI R"

Applicable in Ser vi ce-class directives.

The renove-fi | e function deletes a file when the client sends a request whose
method is DELETE. It deletes the file indicated by the URL if the user is
authorized and the server has the needed file system privileges.

Chapter 3, Predefined SAFs and the Request Handling Process 99

Service Stage

Parameters

Examples

rename-file

Parameters

Examples

send-cgi

When remote file manipulation is enabled in the server, the obj . conf file
contains a Ser vi ce-class function that invokes r enove- f i | e when the request
method is DELETE.

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Service fn="renove-file" nethod="DELETE"

Applicable in Ser vi ce-class directives.

The rename- fi | e function renames a file when the client sends a request with
a New URL header whose method is MOVE . It renames the file indicated by the
URL to New URL within the same directory if the user is authorized and the
server has the needed file system privileges.

When remote file manipulation is enabled in the server, the obj . conf file
contains a Ser vi ce-class function that invokes r enane- f i | e when the request
method is MOVE.

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Service fn="renane-file" method="MOVE"

Applicable in Ser vi ce-class directives.

The send- cgi function sets up the CGI environment variables, runs a file as a
CGI program in a new process, and sends the results to the client.

100 NSAPI Programmer’s Guide

Parameters

Examples

send-file

Parameters

Service Stage

For details about the CGI environment variables and their NSAPI equivalents
refer to section “CGI to NSAPI Conversion” in Chapter 4, “Creating Custom
SAFs.”

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Servi ce fn=send-cgi
Servi ce type=nagnus-internal/cgi fn=send-cgi

Applicable in Ser vi ce-class directives.

The send- fi | e function sends the contents of the requested file to the client. It
provides the cont ent -t ype, cont ent -1 engt h, and | ast - nodi fi ed headers.

Most requests are handled by this function using the following directive (which
usually comes last in the list of Ser vi ce-class directives in the default object so
that it acts as a default)

Servi ce net hod="(GET| HEAD| POST) " type="*~magnus-i nternal /*" fn="send-file"

This directive is invoked if the method of the request is GET, HEAD, or POST, and
the type does not start with nagnus-i nt er nal /. Note here that the pattern *~
means “does not match.” For a list of characters that can be used in patterns,
see Appendix D, “Wildcard Patterns.”

nocache New in iPlanet Web Server 4.1.

(optional) prevents the server from caching responses to
static file requests. For example, you can specify that files
in a particular directory are not to be cached, which is
useful for directories where the files change frequently.

The value you assign to this parameter is ignored. If you do
not wish to use this parameter, leave it out.

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions

Chapter 3, Predefined SAFs and the Request Handling Process 101

Service Stage

query optional parameter common to all Service-class functions

Examples
Servi ce type="*~magnus-internal /*" nethod="(GET| HEAD) "
fn="send-file"
In the following example, the server does not cache static files from / export/
somedi r/ when requested by the URL prefix / myur| .
<Cbj ect name=defaul t >
NaneTrans fn="pfx2dir" from="/myurl" dir="/export/nmydir",
name="nyname"
Servi ce met hod=(GET| HEAD| POST) type=*~magnus-internal /*
fn=send-file
</ Obj ect >
<Cbj ect nanme="nynane" >
Servi ce met hod=(GET| HEAD) type=*~magnus-internal/* fn=send-
file nocache=""
</ Obj ect >

send-range
Applicable in Ser vi ce-class directives.
When the client requests a portion of a document, by specifying HTTP byte
ranges, the send- r ange function returns that portion.
Parameters

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Examples

Servi ce fn=send-range

102 NSAPI Programmer’s Guide

send-shellcgi

Parameters

Examples

send-wincgi

Parameters

Examples

upload-file

Service Stage

Applicable in Ser vi ce-class directives.

Windows NT only. The send- shel | cgi function runs a file as a shell CGI
program and sends the results to the client. Shell CGl is a server configuration
that lets you run CGI applications using the file associations set in Windows
NT. For information about shell CGI programs, consult the iPlanet Web Server
Administrator’s Guide.

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Servi ce fn=send-shell cgi
Servi ce type=nmagnus-internal /cgi fn=send-shellcgi

Applicable in Ser vi ce-class directives.

Windows NT only. The send-wi ncgi function runs a file as a Windows CGI
program and sends the results to the client. For information about Windows
CGI programs, consult the iPlanet Web Server Administrator’s Guide.

type optional parameter common to all Service-class functions
nmet hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions

Servi ce fn=send-wi ncgi
Servi ce type=nmagnus-internal /cgi fn=send-w ncgi

Applicable in Ser vi ce-class directives.

Chapter 3, Predefined SAFs and the Request Handling Process 103

AddLog Stage

The upl oad- fi | e function uploads and saves a new file when the client sends
a request whose method is PUT if the user is authorized and the server has the
needed file system privileges.

When remote file manipulation is enabled in the server, the obj . conf file
contains a Ser vi ce-class function that invokes upl oad- f i | e when the request

method is PUT.
Parameters
type optional parameter common to all Service-class functions
met hod optional parameter common to all Service-class functions
query optional parameter common to all Service-class functions
Examples

Servi ce fn=upload-file

AddLog Stage

After the server has responded to the request, the AddLog directives are
executed to record information about the transaction.

If there is more than one AddLog directive, all are executed.

The following AddLog-class functions are described in detail in this section:

= common- | og records information about the request in the common log
format.

= flex-1og records information about the request in a flexible, configurable
format.

= record-useragent records the client’s ip address and user-agent header.

common-log

Applicable in AddLog-class directives.

This function records request-specific data in the common log format (used by
most HTTP servers). There is a log analyzer in the / extras/ | og_anly
directory for iPlanet Web Server. The common log must have been initialized
previously by the i ni t-cgi function.

104 NSAPI Programmer’s Guide

Parameters

Examples

See Also

flex-log

AddLog Stage

There are also a number of free statistics generators for the common log format.

name (optional) gives the name of a log file, which must have
been given as a parameter to the i ni t - cl f Init function.
If no name is given, the entry is recorded in the global log
file.

i ponly (optional) instructs the server to log the IP address of the
remote client rather than looking up and logging the DNS
name. This will improve performance if DNS is off in the
magnus. conf file. The value of i ponl y has no
significance, as long as it exists; you may use i ponl y=1.

Log all accesses to the global log file
AddLog fn=conmmon-| og

Log accesses from outside our subnet (198.93.5.*) to
nonl ocal | og

<Client ip="%*~198.93.5.*">
AddLog f n=conmon-1| og nane=nonl ocal | og

</dient>

init-clf

Applicable in AddLog-class directives.

This function records request-specific data in a flexible log format. It may also
record requests in the common log format. There is a log analyzer in the /
ext ras/ f | exanl g directory for iPlanet Web Server.

There are also a number of free statistics generators for the common log format.

The log format is specified by the f1 ex-ini t function call. For information
about rotating logs, see fl ex-rotate-init.

Chapter 3, Predefined SAFs and the Request Handling Process 105

AddLog Stage

Parameters

Examples

See Also

nane (optional) gives the name of a log file, which must have
been given as a parameter to the f | ex-i ni t Init function.
If no name is given, the entry is recorded in the global log
file.

i ponly (optional) instructs the server to log the IP address of the
remote client rather than looking up and logging the DNS
name. This will improve performance if DNS is off in the
magnus. conf file. The value of i ponl y has no
significance, as long as it exists; you may use i ponl y=1.

Log all accesses to the global log file

AddLog fn=fl ex-| og

Log accesses from outside our subnet (198.93.5.*) to
nonl ocal | og

<dient ip="*~198.93.5. *">

AddLog fn=fl ex-1og name=nonl ocal | og

</dient>

flex-rotate-init, flex-init, init-clf, conmmon-log, record-
user agent

record-useragent

Parameters

Applicable in AddLog-class directives.

The recor d- user agent function records the IP address of the client, followed
by its User-Agent HTTP header. This indicates what version of Netscape
Navigator (or other client) was used for this transaction.

nane (optional) gives the name of a log file, which must have
been given as a parameter to the i ni t - cl f Init function.
If no name is given, the entry is recorded in the global log
file.

106 NSAPI Programmer’s Guide

Examples

See Also

Error Stage

Record the client ip address and user-agent to browserl og
AddLog f n=record-useragent name=browserl og

flex-init,init-clf, comon-1|og, record-useragent, fl ex-1og

Error Stage

send-error

Parameters

If a server application function results in an error, it sets the HTTP response
status code and returns the value REQ ABORTED. When this happens, the server
stops processing the request. Instead, it searches for an Error directive matching
the HTTP response status code or its associated reason phrase, and executes
the directive’s function. If the server does not find a matching Error directive, it
returns the response status code to the client.

The following Error-class functions are described in detail in this section:

= send-error sends an HTML file to the client in place of a specific HTTP
response status.

Applicable in Error -class directives.

The send- error function sends an HTML file to the client in place of a specific
HTTP response status. This allows the server to present a friendly message
describing the problem. The HTML page may contain images and links to the
server's home page or other pages.

pat h specifies the full file system path of an HTML file to send to
the client. The file is sent as t ext / ht m regardless of its
name or actual type. If the file does not exist, the server
sends a simple default error page.

reason (optional) is the text of one of the reason strings (such as
“Unauthorized” or “Forbidden”). The string is not case
sensitive.

Chapter 3, Predefined SAFs and the Request Handling Process 107

Error Stage

code

Examples
Error fn=send-error
errors/401. htni

108 NSAPI Programmer’s Guide

(optional) is a three-digit number representing the HTTP
response status code, such as 401 or 407.

This can be any HTTP response status code or reason
phrase according to the HTTP specification.

The following is a list of common HTTP response status
codes and reason strings.

< 401 Unaut hori zed.
= 403 For bi dden.
e 404 Not Found.
= 500 Server FError.

code=401 pat h=/ net scape/ server 4/ docs/

Chapter

Creating Custom SAFs

This chapter describes how to write your own NSAPI plugins that define
custom Server Application Functions (SAFs). Creating plugins allows you to
modify or extend the iPlanet Web Server’s built-in functionality. For example,
you can modify the server to handle user authorization in a special way or
generate dynamic HTML pages based on information in a database.

The sections in this chapter are:

« The SAF Interface

= SAF Parameters

= Result Codes

= Creating and Using Custom SAFs

= Overview of NSAPI C Functions

= Required Behavior of SAFs for Each Directive
= CGI to NSAPI Conversion

Before writing custom SAFs, you should familiarize yourself with the request
handling process, as described in Chapter 1, “Basics of Server Operation.” Also,
before writing a custom SAF, check if a built-in SAF already accomplishes the
tasks you have in mind. See Chapter 3, “Predefined SAFs and the Request
Handling Process,” for a list of the pre-defined SAFs.

For a complete list of the NSAPI routines for implementing custom SAFs, see
Chapter 5, “NSAPI Function Reference.”

Chapter 4, Creating Custom SAFs 109

The SAF Interface

The SAF Interface

All SAFs (custom and built-in) have the same C interface regardless of the
request-handling step for which they are written. They are small functions
designed for a specific purpose within a specific request-response step. They
receive parameters from the directive that invokes them in the obj . conf file,
from the server, and from previous SAFs.

Here is the C interface for a SAF:

int function(pblock *pb, Session *sn, Request *rg);
The next section discusses the parameters in detail.

The SAF returns a result code which indicates whether and how it succeeded.
The server uses the result code from each function to determine how to
proceed with processing the request. See the section “Result Codes” for details
of the result codes.

SAF Parameters

This section discusses the SAF parameters in detail. The parameters are:

< pb (parameter bl ock)-- contains the parameters from the directive that
invokes the SAF in the obj . conf file.

= sn (session)-- contains information relating to a single TCP/IP session.
< rqg (request)-- contains information relating to the current request.

pb (parameter block)

The pb parameter is a pointer to a pbl ock data structure that contains values
specified by the directive that invokes the SAF. A pbl ock data structure
contains a series of name/value pairs.

For example, a directive that invokes the basi c- nsca function might look like:

Aut hTr ans fn=basi c-ncsa aut h-type=basic
dbn¥/ net scape/ server 4/ userdb/rs

110 NSAPI Programmer’s Guide

SAF Parameters

In this case, the pb parameter passed to basi c- ncsa contains name/value pairs
that correspond to aut h-t ype=basi ¢ and dbm=/ net scape/ ser ver 4/ user db/
rs.

NSAPI provides a set of functions for working with pbl ock data structures. For
example, pbl ock_fi ndval () returns the value for a given name in a pbl ock.
See “Parameter Block Manipulation Routines” for a summary of the most
commonly used functions for working with parameter blocks.

sn (session)

The sn parameter is a pointer to a Sessi on data structure. This parameter
contains variables related to an entire session (that is, the time between the
opening and closing of the TCP/IP connection between the client and the
server). The same sn pointer is passed to each SAF called within each request
for an entire session. The following list describes the most important fields in
this data structure.

(See Chapter 5, “NSAPI Function Reference,” for information about NSAPI
routines for manipulating the Sessi on data structure):

e sn->client

is a pointer to a pbl ock containing information about the client such as its
IP address, DNS name, or certificate. If the client does not have a DNS
name or if it cannot be found, it will be set to the client’s IP number.

e sn->csd

is a platform-independent client socket descriptor. You will pass this to the
routines for reading from and writing to the client.

rq (request)

The r q parameter is a pointer to a r equest data structure. This parameter
contains variables related to the current request, such as the request headers,
URI, and local file system path. The same r equest pointer is passed to each
SAF called in the request-response process for an HTTP request.

Chapter 4, Creating Custom SAFs 111

SAF Parameters

The following list describes the most important fields in this data structure (See
Chapter 5, “NSAPI Function Reference,” for information about NSAPI routines
for manipulating the Request data structure).

112 NSAPI Programmer’s Guide

rg->vars

is a pointer to a pbl ock containing the server’s “working” variables. This
includes anything not specifically found in the following three pblocks. The
contents of this pbl ock vary depending on the specific request and the type
of SAF. For example, an AuthTrans SAF may insert an aut h- user parameter
into r g- >var s which can be used subsequently by a PathCheck SAF.

rg->reqpb

is a pointer to a pbl ock containing elements of the HTTP request. This
includes the HTTP method (GET, POST, ...), the URI, the protocol (normally
HTTP/1.0), and the query string. This pbl ock does not normally change
throughout the request-response process.

r g- >headers

is a pointer to a pbl ock containing all the request headers (such as User-
Agent, If-Modified-Since, ...) received from the client in the HTTP request.
See Appendix G, “HyperText Transfer Protocol,” for more information
about request headers. This pbl ock does not normally change throughout
the request-response process.

rg->srvhdrs

is a pointer to a pbl ock containing the response headers (such as Server,
Date, Content-type, Content-length,...) to be sent to the client in the HTTP
response. See Appendix G, “HyperText Transfer Protocol,” for more
information about response headers.

rg->directive_is_cacheabl e

is a flag which may be used by your SAF to tell the server that your SAF is
cacheable.

The server attempts to cache requests that generate the same response
when requested by different clients at different times. That is, if a client
requests / nf g/ proc/item txt, and then another client requests / nf g/
proc/item txt, the server's response is the same as long as / nf g/ pr oc/

i tem t xt doesn't change between the requests. When the server can avoid
calling the SAFs for a request, it can return the response faster.

Result Codes

The flag is set to 0 on entry to each SAF. If you do not set this flag to 1
before your SAF returns, the server does not try to cache the request, and
each subsequent request calls your SAF again. If your SAF sets it to 1, and
all other SAFs called for this request also set the flag, the server caches the
request and does not call your SAF when another request is made for the
same resource.

If your SAF performs access control, logging, depends on the client IP
address, the user-agent, or any headers the client sends, it should not set
directive_i s_cacheabl e. Otherwise you should set
directive_is_cacheabl e to 1.

During development, you may disable server caching by adding the
following line at the top of the obj . conf file:

Init fn=cache-init disable=true

Don't forget to stop and start the server after saving the file. This disables
server caching so that your SAF will always be called.

The r q parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, r g contains
whatever values were inserted or modified by previously executed SAFs. On
output, r g contains any modifications or additional information inserted by the
SAF. Some SAFs depend on the existence of specific information provided at an
earlier step in the process. For example, a PathCheck SAF retrieves values in
rg- >var s which were previously inserted by an AuthTrans SAF.

Result Codes

Upon completion, a SAF returns a result code. The result code indicates what
the server should do next. The result codes are:

REQ_PRCCEED

indicates that the SAF achieved its objective. For some request-response
steps (AuthTrans, NameTrans, Service, and Error), this tells the server to
proceed to the next request-response step, skipping any other SAFs in the
current step. For the other request-response steps (PathCheck, ObjectType,
and AddLog), the server proceeds to the next SAF in the current step.

REQ_NCACTI ON

Chapter 4, Creating Custom SAFs 113

Creating and Using Custom SAFs

indicates the SAF took no action. The server continues with the next SAF in
the current server step.

REQ_ABCRTED

indicates that an error occurred and an HTTP response should be sent to
the client to indicate the cause of the error. A SAF returning REQ ABORTED
should also set the HTTP response status code. If the server finds an Er r or
directive matching the status code or reason phrase, it executes the SAF
specified. If not, the server sends a default HTTP response with the status
code and reason phrase plus a short HTML page reflecting the status code
and reason phrase for the user. The server then goes to the first AddLog
directive.

REQ EXI T

indicates the connection to the client was lost. This should be returned
when the SAF fails in reading or writing to the client. The server then goes
to the first AddLog directive.

Creating and Using Custom SAFs

Custom SAFs are functions in shared libraries that are loaded and called by the
server. Follow these steps to create a custom SAF:

1.

114 NSAPI Programmer’s Guide

Write the Source Code

using the NSAPI functions. Each SAF is written for a specific directive.
Compile and Link

the source code to create a shared library (. so, .sl, or.dll) file.
Load and Initialize the SAF

by editing the obj . conf file to:

-- Load the shared library file containing your custom SAF(s).

-- Initialize the SAF if necessary.

Instruct the Server to Call the SAFs

by editing obj . conf to call your custom SAF(s) at the appropriate time.

Creating and Using Custom SAFs

5. Stop and Start the Server.
6. Test the SAF

by accessing your server from a browser with a URL that triggers your
function.

The following sections describe these steps in greater detail.

Write the Source Code

Write your custom SAFs using NSAPI functions. For a summary of some of the
most commonly used NSAPI functions, see the section “Overview of NSAPI C
Functions.” Chapter 5, “NSAPI Function Reference,” provides information about
all of the routines available.

For examples of custom SAFs, see nsapi / exanpl es/ in the server root
directory and also see Chapter 6, “Examples of Custom SAFs.”

The signature for all SAFs is:

int function(pblock *pb, Session *sn, Request *rg);
For more details on the parameters, see the section “SAF Parameters.”

The iPlanet Web Server runs as a multi-threaded single process. On Unix
platforms there are actually two processes (a parent and a child) for historical
reasons. The parent process performs some initialization and forks the child
process. The child process performs further initialization and handles all the
HTTP requests.

Keep these things in mind when writing your SAF. Write thread-safe code.
Blocking may affect performance. Write small functions with parameters and
configure them in obj . conf . Carefully check and handle all errors. Also log
them so that you can determine the source of problems and fix them.

If necessary, write an initialization function that performs initialization tasks
required by your new SAFs. The initialization function has the same signature
as other SAFs:

int function(pblock *pb, Session *sn, Request *rg);

Chapter 4, Creating Custom SAFs 115

Creating and Using Custom SAFs

SAFs expect to be able to obtain certain types of information from their
parameters. In most cases, parameter block (pbl ock) data structures provide
the fundamental storage mechanism for these parameters A pbl ock maintains
its data as a collection of name-value pairs. For a summary of the most
commonly used functions for working with pbl ock structures, see “Parameter
Block Manipulation Routines.”

When defining a SAF, you do not specifically state which directive it is written
for. However, each SAF must be written for a specific directive (such asInit,
Aut hTr ans, Servi ce and so on). Each directive expects its SAFs to do
particular things, and your SAF must conform to the expectations of the
directive for which it was written. For details of what each directive expects of
its SAFs, see the section “Required Behavior of SAFs for Each Directive.”

Compile and Link

Compile and link your code with the native compiler for the target platform.
For Windows NT, use Microsoft Visual C++ 6.0 or newer when compiling for
iPlanet Web Server 4.x. You must have an import list that specifies all global
variables and functions to access from the server binary. Use the correct
compiler and linker flags for your platform. Refer to the example Makefile in
the nsapi / exanpl es directory. On Windows NT link to nsht t pd3x. i b or
nshtt pd40. | i b as appropriate in the pl ugi ns/ | i b directory.

The i ncl ude directory in the server - root directory in Enterprise Server 3.x
orin server-root/ plugins in iPlanet Web Server 4.x contains the NSAPI
header file. All the NSAPI header information is now contained in one file
called nsapi . h.

New in iPlanet Web Server 4.0: For AlX only, plugins built for 3.x versions of
the server must be relinked to work with 4.x versions. The files you need,
which are in the server_r oot/ pl ugi ns/ nsapi / exanpl es/ directory, are as
follows:

= The Makefi | e file has the - G option instead of the old - bM SRE - ber ok
-brtl -bnoentry options.

= A script, rel i nk_36pl ugi n, modifies a plugin built for 3.x versions of the
server to work with 4.x versions. The script’s comments explain its use.

116 NSAPI Programmer’s Guide

Creating and Using Custom SAFs

iPlanet Web Server 4.x versions are built on AIX 4.2, which natively supports
runtime-linking. Because of this, NSAPI plugins, which reference symbols in the
ns- ht t pd main executable, must be built with the - G option, which specifies
that symbols must be resolved at runtime.

Previous versions of Netscape Enterprise Server, however, were built on AIX
4.1, which did not support native runtime-linking. Enterprise Server had
specific additional software (provided by IBM AlX development to Netscape) to
enable plugins. No special runtime-linking directives were required to build
plugins. Because of this, plugins that have been built for previous server
versions on AlX will not work with iPlanet Web Server 4.x versions as they are.

However, they can easily be relinked to work with iPlanet Web Server 4.x
versions. The relink_36plugin script relinks existing plugins. Only the existing
plugin itself is required for the script; original source and .o files are not
needed. More specific comments are in the script itself. Since all AIX versions
from 4.2 onward natively support runtime-linking, no plugins for iPlanet Web
Server versions 4.x and later will need to be relinked.

Load and Initialize the SAF

For each shared library (plugin) containing custom SAFs to be loaded into the
iPlanet Web Server, add an I ni t directive that invokes the | oad- nodul es SAF
to obj . conf.

The syntax for a directive that calls | oad- nodul es is:

Init fn=load-nodul es shli b=[path]sharedlibnanme
funcs="SsAF1, ..., SAFNn"

= shlib is the local file system path to the shared library (plugin).

= funcs is a comma-separated list of function names to be loaded from the
shared library. Function names are case-sensitive. You may use dash (-) in
place of underscore () in function names. There should be no spaces in
the function name list.

If the new SAFs require initialization, be sure that the initialization function
is included in the f uncs list.

Chapter 4, Creating Custom SAFs 117

Creating and Using Custom SAFs

For example, if you created a shared library ani mat i ons. so that defines two
SAFs do_smal | _ani m() and do_bi g_ani m() and also defines the initialization
function i ni t _ny_ani mat i ons, you would add the following directive to load
the plugin:

Init fn=load-nodul es shli b=[path]ani mations. so

funcs="do_smal | _ani m do_bi g_animinit_ny_ani mati ons"

If necessary, also add an I ni t directive that calls the initialization function for
the newly loaded plugin. For example, if you defined the function
init_my_new SAF() to perform an operation on the maxAni nLoop parameter,
you would a directive such as the following to obj . conf:

Init fn=init_my_ani mati ons maxAni nLoop=5

Instruct the Server to Call the SAFs

Next, add directives to obj . conf to instruct the server to call each custom SAF
at the appropriate time. The syntax for directives is:

Directive fn=function-nane [nanel="val uel"]...[nameN="val ueN']

= Directive is one of the server directives, such as I ni t, Aut hTr ans, and so
on.

e function-namne is the name of the SAF to execute.

= naneN="val ueN' are the names and values of parameters which are passed
to the SAF.

Depending on what your new SAF does, you might need to add just one
directive to obj . conf or you might need to add more than one directive to
provide complete instructions for invoking the new SAF.

For example, if you define a new Aut hTr ans or Pat hCheck SAF you could just
add an appropriate directive in the default object. However, if you define a
new Ser vi ce SAF to be invoked only when the requested resource is in a
particular directory or has a new kind of file extension, you would need to take
extra steps.

118 NSAPI Programmer’s Guide

Creating and Using Custom SAFs

If your new Service SAF is to be invoked only when the requested resource has
a new kind of file extension, you might need to add an entry to the MIME types
file so that the t ype value gets set properly during the Qbj ect Type stage. Then
you could add a Ser vi ce directive to the default object that specifies the
desired t ype value.

If your new Ser vi ce SAF is to be invoked only when the requested resource is
in a particular directory, you might need to define a NaneTr ans directive that

generates a name or ppat h value that matches another object, and then in the

new object you could invoke the new Ser vi ce function.

For example, suppose your plugin defines two new SAFs, do_smnal | _ani n()
and do_bi g_ani n() which both take speed parameters. These functions run
animations. All files to be treated as small animations reside in the directory b: /
Net scape/ ser ver 4/ docs/ ani mat i ons/ smal |, while all files to be treated as full
screen animations reside in the directory D: / Net scape/ ser ver 4/ docs/

ani mations/fullscreen.

To ensure that the new animation functions are invoked whenever a client
sends a request for either a small or fullscreen animation, you would add
NaneTr ans directives to the default object to translate the appropriate URLS to
the corresponding pathnames and also assign a name to the request.

NanmeTr ans fn=pfx2dir frone"/ani mati ons/small"
di r="D:/ Net scape/ server 4/ docs/ ani mati ons/snmal | " nanme="smal | _ani nt

NameTrans fn=pfx2dir from="/ani mations/fullscreen"
di r="D:/ Net scape/ server 4/ docs/ ani mati ons/ful | screen"
name="ful | screen_ani nt

You also need to define objects that contain the Ser vi ce directives that run the
animations and specify the speed parameter.

<bj ect nane="snal | _anint >

Servi ce fn=do_smal | _ani m speed=40
</ Cbj ect >

<bj ect name="full screen_ani nf'>
Servi ce fn=do_bi g_ani m speed=20
</ Cbj ect >

Chapter 4, Creating Custom SAFs 119

Overview of NSAPI C Functions

Stop and Start the Server

After modifying obj . conf, you need to start and stop the server. On Unix you
may execute the shell scripts st op and st art in the servers home directory. Do
not use rest art on Unix since the server will not reload your shared library
after it has been loaded once.

On Windows NT you may use the Services Control Panel to stop and start the
server. Once you have started the server with your shared library, you'll have to
stop it before you can build your shared library again.

You can also use the Server Manager interface to re-load obj . conf and to start
and stop the server.

If there are problems during startup, check the error log.

Test the SAF

Test your SAF by accessing your server from a browser with a URL that triggers
your function. For example, if your new SAF is triggered by requests to
resources in http:// server-nane/ ani mati ons/ snal |, try requesting a
valid resource that starts with that URI.

You should disable caching in your browser so that the server is sure to be
accessed. In Navigator you may hold the shift key while clicking the Reload
button to ensure that the cache is not used. (Note that the shift-reload trick
does not always force the client to fetch images from source if the images are
already in the cache.)

You may also wish to disable the server cache using the cache-i nit SAF.

Examine the access log and error log to help with debugging.

Overview of NSAPI C Functions

NSAPI provides a set of C functions that are used to implement SAFs. They
serve several purposes. They provide platform-independence across Netscape
Server operating system and hardware platforms. They provide improved
performance. They are thread-safe which is a requirement for SAFs. They

120 NSAPI Programmer’s Guide

Overview of NSAPI C Functions

prevent memory leaks. And they provide functionality necessary for
implementing SAFs. You should always use these NSAPI routines when
defining new SAFs.

This section provides an overview of the function categories available and
some of the more commonly used routines. All the public routines are detailed
in Chapter 5, “NSAPI Function Reference.”

The main categories of NSAPI functions are:
= Parameter Block Manipulation Routines
= Protocol Utilities for Service SAFs

= Memory Management

e File I/0
= Network 1/0
e Threads
= Utilities

Parameter Block Manipulation Routines

The parameter block manipulation functions provide routines for locating,
adding, and removing entries in a pbl ock data structure include;

= pbl ock_fi ndval returns the value for a given name in a pbl ock.
« pbl ock_nvinsert adds a new name-value entry to a pbl ock.

= pbl ock_renmove removes a pbl ock entry by name from a pbl ock. The
entry is not disposed. Use param fr ee to free the memory used by the
entry.

= param free frees the memory for the given pbl ock entry.

= pbl ock_pbl ock2str creates a new string containing all the name-value
pairs from a pbl ock in the form “nane=val ue name=val ue.” This can be a
useful function for debugging.

Chapter 4, Creating Custom SAFs 121

Overview of NSAPI C Functions

Protocol Utilities for Service SAFs

Protocol utilities provide functionality necessary to implement Service SAFs:

request _header returns the value for a given request header name,
reading the headers if necessary. This function must be used when
requesting entries from the browser header pbl ock (r g- >header s).

prot ocol _st at us sets the HTTP response status code and reason phrase

protocol _start_response sends the HTTP response and all HTTP
headers to the browser.

Memory Management

Memory management routines provide fast, platform-independent versions of
the standard memory management routines. They also prevent memory leaks
by allocating from a temporary memory (called “pooled” memory) for each
request and then disposing the entire pool after each request. There are
wrappers for standard memory routines for using permanent memory. To
disable pooled memory for debugging, see the built-in SAF pool -i ni t in
Chapter 3, “Predefined SAFs and the Request Handling Process.”

122 NSAPI Programmer’s Guide

MALLOC

FREE

STRDUP
REALLOC
CALLOC
PERM_MALLOC
PERM_FREE
PERM_STRDUP
PERM_REALLOC
PERM_CALLOC

Overview of NSAPI C Functions

File I/O

The file 1/0 functions provides platform-independent, thread-safe file 1/0
routines.

= system f openROopens a file for read-only access.

= system f openRWopens a file for read-write access, creating the file if
necessary.

= system f openWA opens a file for write-append access, creating the file if
necessary.

e system fcl ose closes a file.
e system fread reads from a file.
e system fwite writes to a file.

e systemfwite_atom c locks the given file before writing to it. This
avoids interference between simultaneous writes by multiple processes or
threads.

Network 1/O

Network I/0 functions provide platform-independent, thread-safe network 1/O
routines. These routines work with SSL when it's enabled.

= net buf _grab reads from a network buffer’s socket into the network buffer.
= net buf _get ¢ gets a character from a network buffer.
e net_wite writes to the network socket.

Threads

Thread functions include functions for creating your own threads which are
compatible with the server’s threads. There are also routines for critical sections
and condition variables.

e systhread_start creates a new thread.

= systhread_sl eep puts a thread to sleep for a given time.
e crit_init creates a new critical section variable.

e crit_enter gains ownership of a critical section.

e crit_exit surrenders ownership of a critical section.

Chapter 4, Creating Custom SAFs 123

Required Behavior of SAFs for Each Directive

Required

e crit_term nate disposes of a critical section variable.

e condvar _init creates a new condition variable.

= condvar _notify awakens any threads blocked on a condition variable.
e condvar_wait blocks on a condition variable.

= condvar _t er ni nat e disposes of a condition variable.

Utilities

Utility functions include platform-independent, thread-safe versions of many
standard library functions (such as string manipulation) as well as new utilities
useful for NSAPI.

= daenon_atrestart (Unix only) registers a user function to be called when
the server is sent a restart signal (HUP) or at shutdown.

e util_getline getsthe next line (up to a LF or CRLF) from a buffer.

e util_hostnanme gets the local hostname as a fully qualified domain name.
e util_later_than compares two dates.

e util_sprintf same as standard library routine sprintf ().

e util_strftime same as standard library routine strfti me().

e util_uri_escape converts the special characters in a string into URI
escaped format.

e util_uri_unescape converts the URI escaped characters in a string back
into special characters.

Behavior of SAFs for Each Directive

When writing a new SAF, you should define it to do certain things, depending
on which stage of the request handling process will invoke it. For example,
SAFs to be invoked during the | ni t stage must conform to different
requirements than SAFs to be invoked during the Ser vi ce stage.

The r q parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, r g contains
whatever values were inserted or modified by previously executed SAFs. On
output, r g contains any modifications or additional information inserted by the

124 NSAPI Programmer’s Guide

Required Behavior of SAFs for Each Directive

SAF. Some SAFs depend on the existence of specific information provided at an
earlier step in the process. For example, a PathCheck SAF retrieves values in
rg- >var s which were previously inserted by an AuthTrans SAF.

This section outlines the expected behavior of SAFs used at each stage in the
request handling process.

Init SAFs
AuthTrans SAFs
NameTrans SAFs
PathCheck SAFs
ObjectType SAFs
Service SAFs
Error SAFs
AddLog SAFs

Init SAFs

Purpose: Initialize at startup.

Called at server startup and restart.

rq and sn are NULL.

Initialize any shared resources such as files and global variables.

Can register callback function with daenon_atrestart () to clean up.

On error, insert er r or parameter into pb describing the error and return
REQ ABCRTED.

If successful, return REQ PROCEED.

AuthTrans SAFs

Purpose: Verify any authorization information. Only basic authorization is
currently defined in the HTTP/1.0 specification.

Chapter 4, Creating Custom SAFs 125

Required Behavior of SAFs for Each Directive

Check for Aut hori zat i on header in r g- >header s which contains the
authorization type and uu-encoded user and password information. If
header was not sent return REQ NOACTI ON.

If header exists, check authenticity of user and password.

If authentic, create aut h-t ype, plus aut h- user and/or aut h- gr oup
parameter in r g- >var s to be used later by Pat hCheck SAFs.

Return REQ PROCEED if the user was successfully authenticated,
REQ _NOACTI ON otherwise.

NameTrans SAFs

Purpose: Convert logical URI to physical path

Perform operations on logical path (ppat h in r g- >var s) to convert it into a
full local file system path.

Return REQ PROCEED if ppat h in r g- >var s contains the full local file
system path, or REQ NOACTI ON if not.

To redirect the client to another site, change ppat h in rg->vars to / URL.
Add ur | to rg->vars with full URL (for example., http://
hone. net scape. cont). Return REQ PROCEED.

PathCheck SAFs

126 NSAPI Programmer’s Guide

Purpose: Check path validity and user’s access rights.
Check aut h-t ype, aut h-user and/or aut h- group in rg- >vars.

Return REQ PROCEED if user (and group) is authorized for this area (ppat h
inrg->vars).

If not authorized, insert WAW Aut hent i cat e to r g- >sr vhdr s with a value
such as: Basic; Real me\"Qur private area\". Call

prot ocol _status() to set HTTP response status to
PROTOCCOL_UNAUTHORI ZED. Return REQ ABORTED.

Required Behavior of SAFs for Each Directive

ObjectType SAFs

Purpose: Determine content-type of data.
If content -type inrg->srvhdrs already exists, return REQ NQACTI ON.
Determine the MIME type and create cont ent -t ype in rg- >srvhdrs

Return REQ PROCEED if cont ent - t ype is created, REQ NOACTI ON otherwise

Service SAFs

Purpose: Generate and send the response to the client.

A Service SAF is only called if each of the optional parameters t ype,
met hod, and query specified in the directive in obj . conf match the
request.

Remove existing cont ent - t ype from r g- >sr vhdr s. Insert correct
content-type inrg->srvhdrs.

Create any other headers in r g- >srvhdrs.

Call prot ocol _st at us to set HTTP response status.

Call prot ocol _start_response to send HTTP response and headers.
Generate and send data to the client using net _wri te.

Return REQ PROCEED if successful, REQ EXI T on write error, REQ ABORTED
on other failures.

Error SAFs

Purpose: Respond to an HTTP status error condition.

The Error SAF is only called if each of the optional parameters code and
r eason specified in the directive in obj . conf match the current error.

Error SAFs do the same as Service SAFs, but only in response to an HTTP
status error condition.

Chapter 4, Creating Custom SAFs 127

CGI to NSAPI Conversion

AddLog SAFs

= Purpose: Log the transaction to a log file.

= AddLog SAFs can use any data available in pb, sn, or r g to log this
transaction.

e Return REQ PROCEED.

CGI to NSAPI Conversion

You may have a need to convert a CGI into a SAF using NSAPI. Since the CGI
environment variables are not available to NSAPI, you'll retrieve them from the
NSAPI parameter blocks. The table below indicates how each CGI environment
variable can be obtained in NSAPI.

Keep in mind that your code must be thread-safe under NSAPI. You should use
NSAPI functions which are thread-safe. Also, you should use the NSAPI
memory management and other routines for speed and platform independence.

Table 4.1

CGil getenv() NSAPI

AUTH_TYPE pbl ock_fi ndval ("auth-type", rqg->vars);

AUTH_USER pbl ock_fi ndval ("aut h-user", rqg->vars);

CONTENT_LENGTH pbl ock_findval ("content-length", rg-
>srvhdrs);

CONTENT_TYPE pbl ock_findval (content-type", rqg-
>srvhdrs);

GATEWAY_| NTERFACE "cd/1.1"

HTTP_* pbl ock_findval ("*", rqg->headers); (* is
| ower - case, dash repl aces underscore)

PATH_| NFO pbl ock_fi ndval ("path-info", rg->vars);

PATH_TRANSLATED pbl ock_findval (path-translated", rqg-

>vars);

128 NSAPI Programmer’s Guide

Table 4.1

CGI to NSAPI Conversion

CGil getenv()

NSAPI

QUERY_STRI NG

REMOTE_ADDR
REMOTE_HOST

REMOTE_| DENT

REMOTE_USER
REQUEST_METHCD
SCRI PT_NAVE
SERVER NAVE
SERVER PORT
SERVER_PROTOCOL
SERVER_SOFTWARE

Netscape specific:

CLI ENT_CERT
HOST

HTTPS
HTTPS_KEYSI ZE

HTTPS_SECRETKEYSI Z

E
QUERY

SERVER _URL

pbl ock_findval (query", rg->reqpb); (GET
only, POST puts query string in body data)

pbl ock_findval ("ip", sn->client);

sessi on_dns(sn) ? session_dns(sn)
pbl ock_findval ("ip", sn->client);

pbl ock_findval ("from', rqg->headers); (not
usual Iy avail abl e)

pbl ock_fi ndval ("aut h-user", rg->vars);
pbl ock_fi ndval (" net hod", reqg->reqpb);
pbl ock_findval ("uri", rg->reqpb);

char *util _host nane();
conf_get gl obal s()->Vport; (as a string)
pbl ock_findval ("protocol", rq->reqpb);
MAGNUS_VERSI ON_STRI NG

pbl ock_findval ("auth-cert", rg->vars)
char *session_maxdns(sn); (nmay be null)
security_active ? "ON' : "OFF";

pbl ock_fi ndval ("keysi ze", sn->client);

pbl ock_fi ndval ("secret-keysize", sn-
>client);

pbl ock_findval (query", rg->reqpb); (GET
only, POST puts query string in entity-body
dat a)

http_uri2url _dynamc("","", sn, rq);

Chapter 4, Creating Custom SAFs 129

CGI to NSAPI Conversion

130 NSAPI Programmer’s Guide

Chapter

NSAPI Function Reference

This chapter lists all the public C functions and macros of the Netscape Server
Applications Programming Interface (NSAPI) in alphabetic order. These are the
functions you use when writing your own Server Application Functions (SAFS).
For information on the built-in SAFs, see Chapter 3, “Predefined SAFs and the
Request Handling Process.”

Each function provides the name, syntax, parameters, return value, a
description of what the function does, and sometimes an example of its use
and a list of related functions.

For more information on data structures, see Appendix A, “Data Structure
Reference,” and also look in the nsapi . h header file in the i ncl ude directory
in the build for iPlanet Web Server 4.x.

NSAPI Functions (in Alphabetical Order)

For an alphabetical list of function names, see Appendix H, “Alphabetical List
of NSAPI Functions and Macros.”

Chapter 5, NSAPI Function Reference 131

NSAPI Functions (in Alphabetical Order)

C

CALLOC

Syntax
Returns

Parameters

Example
See also

cinfo_find

Syntax

Returns

The CALLOC macro is a platform-independent substitute for the C library routine
cal | oc. It allocates nuntsi ze bytes from the request’s memory pool. If pooled
memory has been disabled in the configuration file (with the pool -i ni t built-
in SAF), PERM CALLOC and CALLCC both obtain their memory from the system
heap.

voi d *CALLOC(i nt num int size)
A void pointer to a block of memory.

i nt num is the number of elements to allocate.
i nt size is the size in bytes of each element.

/* Allocate space for an array of 100 char pointers */
char *nane;
name = (char *) CALLOC(100, sizeof(char *));

FREE, REALLCC, STRDUP, PERM MALLOC, PERM FREE, PERM REALLCC,
PERM_STRDUP

The cinfo_find() function uses the MIME types information to find the type,
encoding, and/or language based on the extension(s) of the Universal Resource
Identifier (URI) or local file name. Use this information to send headers (r g-
>srvhdr s) to the client indicating the cont ent - t ype, cont ent - encodi ng, and
cont ent - | anguage of the data it will be receiving from the server.

The name used is everything after the last slash (/) or the whole string if no
slash is found. File name extensions are not case-sensitive. The name may
contain multiple extensions separated by period (.) to indicate type, encoding,
or language. For example, the URI a/ b/ fil enane. j p. txt. zi p could
represent a Japanese language, text/plain type, zip encoded file.

cinfo *cinfo_find(char *uri);

A pointer to a newly allocated ci nf o structure if content info was found or
NULL if no content was found

132 NSAPI Programmer’s Guide

Parameters

condvar_init

Syntax

Returns
Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

The ci nf o structure that is allocated and returned contains pointers to the
content-type, content-encoding, and content-language, if found. Each is a
pointer into static data in the types database, or NULL if not found. Do not free
these pointers. You should free the ci nf o structure when you are done using
it.

char *uri is a Universal Resource ldentifier (URI) or local file name. Multiple
file name extensions should be separated by periods (.).

The condvar _i ni t function is a critical-section function that initializes and
returns a new condition variable associated with a specified critical-section
variable. You can use the condition variable to prevent interference between
two threads of execution.

CONDVAR condvar _init (CRITI CAL id);
A newly allocated condition variable (CONDVAR).
CRITI CAL i d is a critical-section variable.

condvar _notify, condvar_term nate, condvar_wait, crit_init,
crit_enter, crit_exit, crit_termnate.

condvar_notify

Syntax

Returns
Parameters

Seealso

The condvar _not i fy function is a critical-section function that awakens any
threads that are blocked on the given critical-section variable. Use this function
to awaken threads of execution of a given critical section. First, use
crit_enter to gain ownership of the critical section. Then use the returned
critical-section variable to call condvar _not i fy to awaken the threads. Finally,
when condvar _noti fy returns, call crit _exit to surrender ownership of the
critical section.

voi d condvar_noti fy(CONDVAR cvV) ;
voi d
CONDVAR cvV is a condition variable.

condvar _init, condvar_term nate, condvar_wait, crit_init,
crit_enter, crit_exit, crit_termnate.

Chapter 5, NSAPI Function Reference 133

NSAPI Functions (in Alphabetical Order)

condvar_terminate

The condvar_terminate function is a critical-section function that frees a
condition variable. Use this function to free a previously allocated condition
variable.

Warning Terminating a condition variable that is in use can lead to unpredictable results.
Syntax voi d condvar _t erm nat e(CONDVAR cv) ;
Returns void
Parameters CONDVAR cv is a condition variable.
Seealso condvar _init, condvar_notify, condvar_wait, crit_init,

crit_enter, crit_exit, crit_termnate.

condvar_wait

Critical-section function that blocks on a given condition variable. Use this
function to wait for a critical section (specified by a condition variable
argument) to become available. The calling thread is blocked until another
thread calls condvar _noti fy with the same condition variable argument. The
caller must have entered the critical section associated with this condition
variable before calling condvar _wai t .

Syntax voi d condvar_wai t (CONDVAR cvV) ;
Returns voi d
Parameters CONDVAR cv is a condition variable.
Seealso condvar _init, condvar_notify, condvar_termnate, crit_init,

crit_enter, crit_exit, crit_termnate.

crit_enter

Critical-section function that attempts to enter a critical section. Use this
function to gain ownership of a critical section. If another thread already owns
the section, the calling thread is blocked until the first thread surrenders
ownership by calling crit_exit.

Syntax void crit_enter(CRI TICAL crvar);

134 NSAPI Programmer’s Guide

Returns
Parameters

Seealso

crit_exit

Syntax

Returns
Parameters

Seealso

crit_init

Warning

Syntax
Returns
Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

voi d
CRI TI CAL crvar is a critical-section variable.

crit _init, crit_exit, crit_termnate.

Critical-section function that surrenders ownership of a critical section. Use this
function to surrender ownership of a critical section. If another thread is
blocked waiting for the section, the block will be removed and the waiting
thread will be given ownership of the section.

void crit_exit(CRITICAL crvar);
voi d
CRI TI CAL crvar is a critical-section variable.

crit_init, crit_enter, crit_termnate.

Critical-section function that creates and returns a new critical-section variable

(a variable of type CRI Tl CAL). Use this function to obtain a new instance of a

variable of type CRI Tl CAL (a critical-section variable) to be used in managing

the prevention of interference between two threads of execution. At the time of
its creation, no thread owns the critical section.

Threads must not own or be waiting for the critical section when
crit_termnate is called.

CRITICAL crit_init(void);
A newly allocated critical-section variable (CRI TI CAL)
none.

crit_enter, crit_exit, crit_termnate.

Chapter 5, NSAPI Function Reference 135

NSAPI Functions (in Alphabetical Order)

crit_terminate

Syntax

Returns
Parameters

Seealso

D

Critical-section function that removes a previously-allocated critical-section
variable (a variable of type CRI Tl CAL). Use this function to release a critical-
section variable previously obtained by a call to crit _init.

void crit_term nate(CRI TI CAL crvar);
voi d
CRI TI CAL crvar is a critical-section variable.

crit _init, crit_enter, crit_exit.

daemon_atrestart

Syntax
Returns

Parameters

Example

The daenon_atrest art function lets you register a callback function named
by f n to be used when the server receives a restart signal. Use this function
when you need a callback function to deallocate resources allocated by an
initialization function. The daenon_at rest art function is a generalization of
the magnus_at restart function.

voi d daenon_atrestart(void (*fn)(void *), void *data);
voi d
void (* fn) (void *) is the callback function.

voi d *dat a is the parameter passed to the callback function when the server
is restarted.

/* Register the brief_term nate function, passing it NULL */
/* to close *a log file when the server is */

/* restarted or shutdown. */

daenon_atrestart(log_cl ose, NULL);

NSAPI _PUBLI C voi d | og_cl ose(voi d *paraneter)

{
system f cl ose(gl obal _I ogfd);

}

136 NSAPI Programmer’s Guide

F

NSAPI Functions (in Alphabetical Order)

filebuf_buf2sd

Syntax

Returns

Parameters

Example
Seealso

filebuf close

Syntax

Returns
Parameters
Example

Seealso

The fil ebuf _buf 2sd function sends a file buffer to a socket (descriptor) and
returns the number of bytes sent.

Use this function to send the contents of an entire file to the client.

int filebuf_buf2sd(filebuf *buf, SYS_NETFD sd);

The number of bytes sent to the socket, if successful, or the constant | O ERROR
if the file buffer could not be sent

filebuf *buf is the file buffer which must already have been opened.

SYS_NETFDsd is the platform-independent socket descriptor. Normally this will
be obtained from the csd (client socket descriptor) field of the sn (Session)
structure.

if (filebuf_buf2sd(buf,
return(REQ EXIT);

sn->csd) == | O_ERROR)

fil ebuf_close, filebuf_open, filebuf_open_nostat, filebuf_getc.

The fil ebuf cl ose function deallocates a file buffer and closes its associated
file.

Generally, use fi | ebuf _open first to open a file buffer, and then
fil ebuf _get c to access the information in the file. After you have finished
using the file buffer, use fi | ebuf _cl ose to close it.

void fil ebuf_close(filebuf *buf);
void

fil ebuf *buf is the file buffer previously opened with fi | ebuf _open.
fil ebuf_cl ose(buf);

fil ebuf _open, fil ebuf_open_nostat,

filebuf_buf2sd, filebuf_getc

Chapter 5, NSAPI Function Reference 137

NSAPI Functions (in Alphabetical Order)

filebuf_getc

Syntax

Returns

Parameters

Seealso

filebuf_open

Syntax

Returns

Parameters

Example

Seealso

The fil ebuf _get ¢ function retrieves a character from the current file position
and returns it as an integer. It then increments the current file position.

Use fi | ebuf _get c to sequentially read characters from a buffered file.
filebuf _getc(filebuf b);

An integer containing the character retrieved, or the constant | O_EOF or
I O_ ERROR upon an end of file or error.

fil ebuf b isthe name of the file buffer.

fil ebuf_close, filebuf_buf2sd, filebuf_open,
fil ebuf _open_nost at

The fi | ebuf _open function opens a new file buffer for a previously opened
file. It returns a new buffer structure. Buffered files provide more efficient file
access by guaranteeing the use of buffered file I/0 in environments where it is
not supported by the operating system.

filebuf *fil ebuf_open(SYS FILE fd, int sz);

A pointer to a new buffer structure to hold the data, if successful or NULL if no
buffer could be opened.

SYS FILE fd is the platform-independent file descriptor of the file which has
already been opened.

i nt sz is the size, in bytes, to be used for the buffer.

filebuf *buf = filebuf_open(fd, FILE BUFFERSI ZE);
if ('buf) {
system fclose(fd);

}

filebuf_getc, filebuf_buf2sd, filebuf_close,
fil ebuf _open_nost at

138 NSAPI Programmer’s Guide

NSAPI Functions (in Alphabetical Order)

filebuf_open_nostat

Syntax

Returns

Parameters

Example

Seealso

FREE

Syntax
Returns

Parameters

The fil ebuf _open_nost at function opens a new file buffer for a previously
opened file. It returns a new buffer structure. Buffered files provide more
efficient file access by guaranteeing the use of buffered file 1/0 in environments
where it is not supported by the operating system.

This function is the same fi | ebuf _open, but is more efficient, since it does not
need to call the request _st at _pat h function. It requires that the stat
information be passed in.

filebuf* filebuf_open_nostat (SYS FILE fd, int sz,
struct stat *finfo);

A pointer to a new buffer structure to hold the data, if successful or NULL if no
buffer could be opened.

SYS FILE fd is the platform-independent file descriptor of the file which has
already been opened.

int sz is the size, in bytes, to be used for the buffer.

struct stat *finfo isthe file information of the file. Before calling the
fil ebuf _open_nost at function, you must call the r equest _stat _path
function to retrieve the file information.

filebuf *buf = filebuf_open_nostat(fd, FILE BUFFERSIZE, &fi nfo);
if ('buf) {
system fclose(fd);

}

filebuf_close, filebuf_open, filebuf_getc, filebuf_buf2sd

The FREE macro is a platform-independent substitute for the C library routine
free. It deallocates the space previously allocated by MALLOC, CALLCC, or
STRDUP from the request’s memory pool.

FREE(voi d *ptr);
voi d

void *ptr isa(void *) pointer to a block of memory. If the pointer is not
one created by MALLOC, CALLQC, or STRDUP, the behavior is undefined.

Chapter 5, NSAPI Function Reference 139

NSAPI Functions (in Alphabetical Order)

Example

Seealso

func_exec

Syntax

Returns

Parameters

Seealso

func_find

Syntax

Returns

Parameters

char *nane;
name = (char *) MALLOC(256);

FREE(nan®e) ;

MALLOC, CALLCC, REALLOC, STRDUP, PERM MALLCC, PERM FREE,
PERM REALLCC, PERM STRDUP

The func_exec function executes the function named by the f n entry in a
specified pbl ock. If the function name is not found, it logs the error and
returns REQ_ABORTED.

You can use this function to execute a built-in server application function (SAF)
by identifying it in the pbl ock.

i nt func_exec(pbl ock *pb, Session *sn, Request *rq);

The value returned by the executed function or the constant REQ ABORTED if no
function was executed.

pbl ock pb is the pbl ock containing the function name (fn) and parameters.
Sessi on *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

| og_error

The func_fi nd function returns a pointer to the function specified by nane. If
the function does not exist, it returns NULL.

FuncPtr func_find(char *nane);

A pointer to the chosen function, suitable for dereferencing or NULL if the
function could not be found.

char *nane is the name of the function.

140 NSAPI Programmer’s Guide

Example

Seealso
log_error

Syntax

Returns

Parameters

NSAPI Functions (in Alphabetical Order)

/* this block of code does the same thing as func_exec */
char *afunc = pbl ock_findval ("afunction", pb);
FuncPtr afnptr = func_find(afunc);
if (afnptr)
return (afnptr)(pb, sn, rq);

func_exec

The 1 og_error function creates an entry in an error log, recording the date,
the severity, and a specified text.

int log_error(int degree, char *func, Session *sn, Request *rq,
char *fmt, ...);

0 if the log entry was created or -1 if the log entry was not created.

i nt degree specifies the severity of the error. It must be one of the following
constants:

LOG_WARN—warning

LOG_M SCONFI G—a syntax error or permission violation
LOG_SECURI TY—an authentication failure or 403 error from a host
LOG_FAl LURE—an internal problem

LOG_CATASTROPHE—a non-recoverable server error

LOG_| NFORM—an informational message

char *func is the name of the function where the error has occurred.
Sessi on *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

char *fnt specifies the format for the printf function that delivers the
message.

. represents a sequence of parameters for the pri ntf function.

Chapter 5, NSAPI Function Reference 141

NSAPI Functions (in Alphabetical Order)

Example |og_error(LOG WARN, "send-file", sn, rq,
"error opening buffer from% (%)"), path,
systemerrnsg(fd));

Seealso func_exec

M

magnus_atrestart

Use the daenon- at rest art function in place of the obsolete
magnus_atrestart function.

The magnus_atrestart function lets you register a callback function named
by f n to be used when the server receives a restart signal. Use this function
when you need a callback function to deallocate resources allocated by an
initialization function.

Syntax void magnus_atrestart(void (*fn)(void *), void *data);
Returns void

Parameters void (* fn) (void *) isthe callback function.

voi d *data is the parameter passed to the callback function when the server
is restarted.

Example /* Close log file when server is restarted */
magnus_atrestart(brief _term nate, NULL);
return REQPROCEED,;

MALLOC

The MALLOC macro is a platform-independent substitute for the C library routine
mal | oc. It normally allocates from the request’s memory pool. If pooled
memory has been disabled in the configuration file (with the pool -i ni t built-
in SAF), PERM_MALLOC and MALLOC both obtain their memory from the system
heap.

Syntax void *MALLOC(i nt size)

Returns A void pointer to a block of memory.

142 NSAPI Programmer’s Guide

Parameters

Example

Seealso

N

net_ip2host

Syntax

Returns

Parameters

net_read

Syntax

Returns

Parameters

NSAPI Functions (in Alphabetical Order)

i nt size isthe number of bytes to allocate.

/* Allocate 256 bytes for a nane */
char *nane;
nane = (char *) MALLOC(256);

FREE, CALLOC, REALLCC, STRDUP, PERM MALLOC, PERM FREE,
PERM CALLOC, PERM REALLCC, PERM STRDUP

The net _i p2host function transforms a textual IP address into a fully-qualified
domain name and returns it.

char *net _i p2host (char *ip, int verify);

A new string containing the fully-qualified domain name, if the transformation
was accomplished or NULL if the transformation was not accomplished.

char *ip is the IP (Internet Protocol) address as a character string in dotted-
decimal notation: nnn. nnn. nnn. nnn

int verify, if non-zero, specifies that the function should verify the fully-
qualified domain name. Though this requires an extra query, you should use it
when checking access control.

The net _read function reads bytes from a specified socket into a specified
buffer. The function waits to receive data from the socket until either at least
one byte is available in the socket or the specified time has elapsed.

int net_read (SYS_NETFD sd, char *buf, int sz, int tinmeout);

The number of bytes read, which will not exceed the maximum size, sz. A
negative value is returned if an error has occurred, in which case errno is set
to the constant ETI MEDQOUT if the operation did not complete before ti meout
seconds elapsed.

SYS _NETFD sd is the platform-independent socket descriptor.

Chapter 5, NSAPI Function Reference 143

NSAPI Functions (in Alphabetical Order)

Seealso

net_write

Syntax

Returns

Parameters

Example

Seealso

char *buf is the buffer to receive the bytes.
int sz is the maximum number of bytes to read.

i nt timeout isthe number of seconds to allow for the read operation before
returning. The purpose of ti meout is not to return because not enough bytes
were read in the given time, but to limit the amount of time devoted to waiting
until some data arrives.

net_ wite

The net _write function writes a specified number of bytes to a specified
socket from a specified buffer. It returns the number of bytes written.

int net_wite(SYS_NETFD sd, char *buf, int sz);

The number of bytes written, which may be less than the requested size if an
error occurred.

SYS NETFD sd is the platform-independent socket descriptor.
char *buf is the buffer containing the bytes.

int sz isthe number of bytes to write.

if (net_wite(sn->csd, FIRSTMSG strlen(FlIRSTMSG) == | O ERROR)
return REQ EXIT;

net read

netbuf_buf2sd

Syntax

Returns

Parameters

The net buf _buf 2sd function sends a buffer to a socket. You can use this
function to send data from IPC pipes to the client.

i nt netbuf _buf 2sd(net buf *buf, SYS NETFD sd, int |en);

The number of bytes transferred to the socket, if successful or the constant
I O_ERRCR if unsuccessful

net buf *buf is the buffer to send.
SYS_NETFD sd is the platform-independent identifier of the socket.
i nt |en is the length of the buffer.

144 NSAPI Programmer’s Guide

Seealso

netbuf close

Syntax

Returns
Parameters

Seealso

netbuf getc

Syntax

Returns

Parameters

Seealso

netbuf grab

Syntax

Returns

NSAPI Functions (in Alphabetical Order)

net buf _cl ose, net buf _get ¢, net buf _grab, net buf _open

The net buf _cl ose function deallocates a network buffer and closes its
associated files. Use this function when you need to deallocate the network
buffer and close the socket.

You should never close the net buf parameter in a Session structure.
voi d net buf _cl ose(net buf *buf);

voi d

is the buffer to close.

net buf *buf

net buf _buf 2sd, net buf _getc, netbuf_grab, net buf _open

The net buf _get ¢ function retrieves a character from the cursor position of the
network buffer specified by b.

net buf _get c(net buf b);

The integer representing the character, if one was retrieved or the constant
| O_ECF or | O_ERRCR, for end of file or error

net buf b is the buffer from which to retrieve one character.

net buf _buf 2sd, net buf_cl ose, net buf _gr ab, net buf _open

The net buf _gr ab function reads sz number of bytes from the network
buffer’s (buf) socket into the network buffer. If the buffer is not large enough it
is resized. The data can be retrieved from buf - >i nbuf on success.

This function is used by the function net buf _buf 2sd.
i nt netbuf_grab(netbuf *buf, int sz);

The number of bytes actually read (between 1 and sz), if the operation was
successful or the constant | O ECOF or | O ERRCR, for end of file or error

Chapter 5, NSAPI Function Reference 145

NSAPI Functions (in Alphabetical Order)

Parameters

Seealso

netbuf_open

Syntax
Returns

Parameters

Seealso

P

net buf *buf is the buffer to read into.

int sz isthe number of bytes to read.

net buf _buf 2sd, net buf _cl ose, net buf _getc, netbuf_open

The net buf _open function opens a new network buffer and returns it. You
can use net buf _open to create a net buf structure and start using buffered 1/0
on a socket.

net buf * net buf _open(SYS_NETFD sd, int sz);
A pointer to a new net buf structure (network buffer)

SYS_NETFD sd is the platform-independent identifier of the socket.

i nt sz is the number of characters to allocate for the network buffer.

net buf _buf 2sd, net buf _cl ose, net buf _getc, netbuf_grab

param_create

Syntax
Returns

Parameters

Example

Seealso

The param cr eat e function creates a pb_par amstructure containing a
specified name and value. The name and value are copied. Use this function to
prepare a pb_par amstructure to be used in calls to pbl ock routines such as
pbl ock_pi nsert.

pb_param *param creat e(char *name, char *val ue);
A pointer to a hew pb_par amstructure.

char *nane is the string containing the name.

char *val ue is the string containing the value.

pb_param *newpp = param create("content-type","text/plain");
pbl ock_pi nsert (newpp, rqg->srvhdrs);

param free, pblock_pinsert, pblock_renmove

146 NSAPI Programmer’s Guide

param_free

Syntax
Returns
Parameters

Example
Seealso

pblock _copy

Syntax
Returns

Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

The par am f r ee function frees the pb_param structure specified by pp and its
associated structures. Use the par am f r ee function to dispose a pb_par amafter
removing it from a pblock with pbl ock_r enove.

i nt param free(pb_param *pp);
1 if the parameter was freed or 0 if the parameter was NULL.
pb_par am *pp is the name-value pair stored in a pblock.

i f (param_free(pbl ock_renove("content-type", rq-srvhdrs)))
return; /* we renoved it */

param create, pblock_pinsert, pblock_renmove

The pbl ock_copy function copies the entries of the source pbl ock and adds
them into the destination pbl ock. Any previous entries in the destination
pbl ock are left intact.

voi d pbl ock_copy(pbl ock *src, pblock *dst);
voi d
pbl ock *src is the source pblock.

pbl ock *dst is the destination pblock.

Names and values are newly allocated so that the original pbl ock may be
freed, or the new pbl ock changed without affecting the original pbl ock.

pbl ock_create, pblock_dup, pblock_free, pblock_find,
pbl ock_findval, pblock_renove, pblock_nvinsert

pblock_create

Syntax

Returns

The pbl ock_cr eat e function creates a new pblock. The pblock maintains an
internal hash table for fast name-value pair lookups.

pbl ock *pbl ock_create(int n);

A pointer to a newly allocated pbl ock.

Chapter 5, NSAPI Function Reference 147

NSAPI Functions (in Alphabetical Order)

Parameters

Seealso

pblock_dup

Syntax
Returns
Parameters

Seealso

pblock_find

Syntax

Returns

Parameters

Seealso

i nt n is the size of the hash table (number of nhame-value pairs) for the
pblock.

pbl ock_copy,
pbl ock_free,

pbl ock_dup, pblock_find, pblock_findval,
pbl ock_nvi nsert, pblock_renove

The pbl ock_dup function duplicates a pblock. It is equivalent to a sequence of
pbl ock_creat e and pbl ock_copy.

pbl ock *pbl ock_dup(pbl ock *src);
A pointer to a newly allocated pbl ock.
pbl ock *src is the source pblock.

pbl ock_creat e, pbl ock_fi nd, pbl ock_fi ndval , pbl ock_free,
pbl ock_fi nd, pbl ock_renove, pbl ock_nvi nsert

The pbl ock_fi nd function finds a specified name-value pair entry in a pblock,
and returns the pb_par amstructure. If you only want the value associated with
the name, use the pbl ock_fi ndval function.

This function is implemented as a macro.
pb_param *pbl ock_find(char *name, pblock *pb);

A pointer to the pb_par amstructure, if one was found or NULL if name was not
found.

char *nane is the name of a name-value pair.

pbl ock *pb is the pbl ock to be searched.

pbl ock_copy, pbl ock_dup,
pbl ock_nvi nsert,

pbl ock_fi ndval ,
pbl ock_renmove

pbl ock_free,

148 NSAPI Programmer’s Guide

NSAPI Functions (in Alphabetical Order)

pblock_findval

Syntax

Returns

Parameters

Example

Seealso

pblock_free

Syntax
Returns
Parameters

Seealso

The pbl ock_fi ndval function finds the value of a specified name in a pblock.
If you just want the pb_par amstructure of the pblock, use the pbl ock_fi nd
function.

The pointer returned is a pointer into the pblock. Do not FREE it. If you want to
modify it, do a STRDUP and modify the copy.

char *pbl ock_findval (char *name, pblock *pb);

A string containing the value associated with the name or NULL if no match
was found

char *nane is the name of a name-value pair.

pbl ock *pb is the pblock to be searched.
see pbl ock_nvinsert.

pbl ock_create, pblock_copy, pblock find, pblock _free,
pbl ock_nvi nsert, pbl ock_renove, request_header

The pbl ock_f r ee function frees a specified pbl ock and any entries inside it. If
you want to save a variable in the pbl ock, remove the variable using the
function pbl ock_r enove and save the resulting pointer.

voi d pbl ock_free(pbl ock *pb);
voi d
pbl ock *pb is the pbl ock to be freed.

pbl ock_copy, pblock_create, pblock_dup, pblock_find,
pbl ock_findval, pblock_nvinsert, pblock_renove

pblock _nninsert

Syntax

The pbl ock_nni nsert function creates a new entry with a given name and a

numeric value in the specified pbl ock. The numeric value is first converted
into a string. The name and value parameters are copied.

pb_param *pbl ock_nni nsert (char *name, int value, pblock *pb);

Chapter 5, NSAPI Function Reference 149

NSAPI Functions (in Alphabetical Order)

Returns A pointer to the new pb_par amstructure.

Parameters char *name is the name of the new entry.

i nt val ue is the numeric value being inserted into the pbl ock. This
parameter must be an integer. If the value you assign is not a number, then
instead use the function pbl ock_nvi nsert to create the parameter.

pbl ock *pb is the pbl ock into which the insertion occurs.
Seealso pbl ock_copy, pbl ock_creat e, pbl ock_fi nd, pbl ock_free,

pbl ock_nvi nsert, pbl ock_remnpve, pbl ock_st r 2pbl ock

pblock_nvinsert

The pbl ock_nvi nsert function creates a new entry with a given name and
character value in the specified pbl ock. The name and value parameters are
copied.

Syntax pb_param *pbl ock_nvi nsert (char *name, char *val ue, pblock *pb);
Returns A pointer to the newly allocated pb_par amstructure

Parameters char *name is the name of the new entry.
char *val ue is the string value of the new entry.

pbl ock *pb is the pbl ock into which the insertion occurs.
Example pbl ock_nvinsert("content-type", "text/htm", rqg->srvhdrs);

Seealso pbl ock_copy, pblock_create, pblock_find, pblock free,
pbl ock_nni nsert, pbl ock_renove, pbl ock_str2pbl ock

pblock_pb2env

The pbl ock_pb2env function copies a specified pbl ock into a specified
environment. The function creates one new environment entry for each name-
value pair in the pbl ock. Use this function to send pbl ock entries to a program
that you are going to execute.

Syntax char **pbl ock_pb2env(pbl ock *pb, char **env);
Returns A pointer to the environment.

Parameters pbl ock *pb is the pbl ock to be copied.

150 NSAPI Programmer’s Guide

Seealso

NSAPI Functions (in Alphabetical Order)

char **env is the environment into which the pbl ock is to be copied.

pbl ock_copy, pblock _create, pblock find, pblock free,
pbl ock_nvi nsert, pbl ock_renove, pbl ock_str2pbl ock

pblock_pblock2str

Syntax

Returns

Parameters

Seealso

The pbl ock_pbl ock2st r function copies all parameters of a specified pbl ock
into a specified string. The function allocates additional non-heap space for the
string if needed.

Use this function to stream the pbl ock for archival and other purposes.
char *pbl ock_pbl ock2str (pbl ock *pb, char *str);

The new version of the str parameter. If str is NULL, this is a new string;
otherwise it is a reallocated string. In either case, it is allocated from the
request’s memory pool.

pbl ock *pb is the pbl ock to be copied.

char *str is the string into which the pbl ock is to be copied. It must have
been allocated by MALLOC or REALLCC, not by PERM MALLOC or
PERM_REALLOC (which allocate from the system heap).

Each name-value pair in the string is separated from its neighbor pair by a
space and is in the format nane="val ue" .

pbl ock_copy, pblock _create, pblock find, pblock _free,
pbl ock_nvi nsert, pbl ock_renmove, pbl ock_str2pbl ock

pblock_pinsert

Syntax
Returns

Parameters

Seealso

The function pbl ock_pi nsert inserts a pb_par amstructure into a pbl ock.
voi d pbl ock_pi nsert (pb_param *pp, pblock *pb);

voi d

pb_param *pp is the pb_par amstructure to insert.

pbl ock *pb is the pbl ock.

pbl ock_copy, pblock _create, pblock find, pblock free,
pbl ock_nvi nsert, pbl ock_renove, pbl ock_str2pbl ock

Chapter 5, NSAPI Function Reference 151

NSAPI Functions (in Alphabetical Order)

pblock _remove

Syntax

Returns

Parameters

Seealso

The pbl ock_r enpove function removes a specified name-value entry from a
specified pbl ock. If you use this function you should eventually call

par am f r ee in order to deallocate the memory used by the pb_param
structure.

pb_param *pbl ock_renmove(char *nane, pbl ock *pb);

A pointer to the named pb_par amstructure, if it was found or NULL if the
named pb_par amwas not found.

char *nane is the name of the pb_par amto be removed.

pbl ock *pb is the pbl ock from which the name-value entry is to be removed.

pbl ock_copy, pblock _create, pblock find, pblock free,
pbl ock_nvi nsert, paramcreate, paramfree

pblock_str2pblock

Syntax

Returns

Parameters

Seealso

The pbl ock_str2pbl ock function scans a string for parameter pairs, adds
them to a pbl ock, and returns the number of parameters added.

i nt pbl ock_str2pbl ock(char *str, pblock *pb);

The number of parameter pairs added to the pbl ock, if any or -1 if an error
occurred

char *str is the string to be scanned.

The name-value pairs in the string can have the format nane=val ue or
nanme="val ue".

All back slashes (\) must be followed by a literal character. If string values are
found with no unescaped = signs (no nane=), it assumes the names 1, 2, 3, and
so on, depending on the string position. For example, if pbl ock_st r 2pbl ock
finds "sone strings together", the function treats the strings as if they
appeared in name-value pairs as 1="sone" 2="strings" 3="together".

pbl ock *pb is the pbl ock into which the name-value pairs are stored.

pbl ock_copy, pblock_create, pblock_find, pblock _free,
pbl ock_nvi nsert, pbl ock_renove, pbl ock_pbl ock2str

152 NSAPI Programmer’s Guide

NSAPI Functions (in Alphabetical Order)

PERM_CALLOC

Syntax

Returns

Parameters

Example

Seealso

PERM_FREE

Syntax
Returns

Parameters

Example

Seealso

The PERM _CALLOC macro is a platform-independent substitute for the C library
routine cal | oc. It allocates nunt si ze bytes of memory that persists after the
request that is being processed has been completed. If pooled memory has
been disabled in the configuration file (with the pool -i ni t built-in SAF),
PERM CALLOC and CALLCC both obtain their memory from the system heap.

voi d *PERM CALLOC(i nt num int size)
A void pointer to a block of memory

i nt num is the number of elements to allocate.

i nt size is the size in bytes of each element.
/* Allocate 256 bytes for a nane */

char **nane;
name = (char **) PERM CALLOC(100, sizeof(char *));

PERM FREE, PERM STRDUP, PERM MALLCC, PERM REALLOC, MALLOC, FREE,
CALLCC, STRDUP, REALLOC

The PERM FREE macro is a platform-independent substitute for the C library
routine f r ee. It deallocates the persistent space previously allocated by
PERM_MALLOC, PERM CALLCC, or PERM STRDUP. If pooled memory has been
disabled in the configuration file (with the pool -i ni t built-in SAF), PERM FREE
and FREE both deallocate memory in the system heap.

PERM FREE(voi d *ptr);
voi d

void *ptr isa(void *) pointer to block of memory. If the pointer is not one
created by PERM MALLCC, PERM CALLQC, or PERM STRDUP, the behavior is
undefined.

char *nane;
name = (char *) PERM MALLOC(256);

PERM _FREE(nane) ;

FREE, MALLOC, CALLOC, REALLOC, STRDUP, PERM MALLOC, PERM CALLCC,
PERM REALLCC, PERM STRDUP

Chapter 5, NSAPI Function Reference 153

NSAPI Functions (in Alphabetical Order)

PERM_MALLOC

Syntax
Returns
Parameters

Example

Seealso

The PERM _MALLOC macro is a platform-independent substitute for the C library
routine mal | oc. It provides allocation of memory that persists after the request
that is being processed has been completed. If pooled memory has been
disabled in the configuration file (with the pool -i ni t built-in SAF),
PERM_MALLOC and MALLOC both obtain their memory from the system heap.

voi d *PERM MALLOC(i nt size)
A void pointer to a block of memory
i nt size isthe number of bytes to allocate.

/* Allocate 256 bytes for a name */
char *name;
name = (char *) PERM_MALLOC(256);

PERM FREE, PERM STRDUP, PERM CALLCC, PERM REALLOC, MALLOC, FREE,
CALLCC, STRDUP, REALLCC

PERM_REALLOC

Warning

Syntax
Returns

Parameters

The PERM_REALLOC macro is a platform-independent substitute for the C library
routine r eal | oc. It changes the size of a specified memory block that was
originally created by MALLOC, CALLCC, or STRDUP. The contents of the object
remains unchanged up to the lesser of the old and new sizes. If the new size is
larger, the new space is uninitialized.

Calling PERM_REALLOC for a block that was allocated with MALLOC, CALLCC, or
STRDUP will not work.

voi d *PERM REALLOC(vod *ptr, int size)
A void pointer to a block of memory

voi d *ptr a void pointer to a block of memory created by PERM MALLCC,
PERM _CALLQOC, or PERM_STRDUP.

i nt size isthe number of bytes to which the memory block should be
resized.

154 NSAPI Programmer’s Guide

Example

Seealso

NSAPI Functions (in Alphabetical Order)

char *name;
name = (char *) PERM_MALLOC(256);
if (NotBigenough())
name = (char *¥) PERM_REALLOC(512);

PERM MALLOC, PERM FREE, PERM CALLOC, PERM STRDUP, MALLCC, FREE,
STRDUP, CALLOC, REALLOC

PERM_STRDUP

Syntax
Returns
Parameters

Seealso

The PERM_STRDUP macro is a platform-independent substitute for the C library
routine st r dup. It creates a new copy of a string in memory that persists after
the request that is being processed has been completed. If pooled memory has
been disabled in the configuration file (with the pool -i ni t built-in SAF),
PERM_STRDUP and STRDUP both obtain their memory from the system heap.

The PERM_STRDUP routine is functionally equivalent to

newstr = (char *) PERM MALLOC(strlen(str) + 1);
strcpy(newstr, str);

A string created with PERM_STRDUP should be disposed with PERM FREE.
char *PERM STRDUP(char *ptr);

A pointer to the new string

char *ptr is a pointer to a string.

PERM MALLCC, PERM FREE, PERM CALLOC, PERM REALLCC, MALLOC, FREE,
STRDUP, CALLCC, REALLOCC

protocol _dump822

Syntax

Returns

Parameters

The prot ocol _dunp822 function prints headers from a specified pbl ock into
a specific buffer, with a specified size and position. Use this function to
serialize the headers so that they can be sent, for example, in a mail message.

char *protocol _dunp822(pbl ock *pb, char *t, int *pos, int tsz);

A pointer to the buffer, which will be reallocated if necessary.
The function also modifies *pos to the end of the headers in the buffer.

pbl ock *pb is the pbl ock structure.

Chapter 5, NSAPI Function Reference 155

NSAPI Functions (in Alphabetical Order)

char *t is the buffer, allocated with MALLOC, CALLOC, or STRDUP.

i nt *pos is the position within the buffer at which the headers are to be
dumped.

int tsz is the size of the buffer.

Seealso protocol _start_response, protocol_status

protocol_set finfo

The protocol _set_finfo function retrieves the cont ent -1 engt h and | ast -
nmodi fi ed date from a specified st at structure and adds them to the response
headers (r g- >srvhdrs). Call prot ocol _set _fi nf o before calling

protocol _start_response.

Syntax int protocol _set finfo(Session *sn, Request *rq, struct stat
*finfo);

Returns The constant REQ PROCEED if the request can proceed normally or the constant
REQ ABORTED if the function should treat the request normally, but not send
any output to the client

Parameters Sessi on *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

stat *finfo is the stat structure for the file.

The st at structure contains the information about the file from the file system.
You can get the st at structure info using r equest _st at _pat h.

Seealso protocol _start_response, protocol_status

protocol_start_response

The protocol _start_response function initiates the HTTP response for a
specified session and request. If the protocol version is HTTP/0.9, the function
does nothing, because that version has no concept of status. If the protocol
version is HTTP/1.0, the function sends a status line followed by the response
headers. Use this function to set up HTTP and prepare the client and server to
receive the body (or data) of the response.

156 NSAPI Programmer’s Guide

NSAPI Functions (in Alphabetical Order)

Syntax int protocol _start_response(Session *sn, Request *rq);

Returns The constant REQ PROCEED if the operation succeeded, in which case you
should send the data you were preparing to send.

The constant REQ NOACTI ON if the operation succeeded, but the request
method was HEAD in which case no data should be sent to the client.

The constant REQ ABORTED if the operation did not succeed.

Parameters Sessi on *sn is the Session.
Request *rq is the Request.

The Sessi on and Request parameters are the same as the ones passed into
your SAF.

Example /* A noaction response fromthis function nmeans the request was
HEAD */
if (protocol _start_response(sn, rq) == REQ NOACTION) {
filebuf_close(groupbuf); /* close our file*/
return REQ _PROCEED;

}

Seealso protocol _status

protocol_status

The protocol _status function sets the session status to indicate whether an
error condition occurred. If the reason string is NULL, the server attempts to
find a reason string for the given status code. If it finds none, it returns
“Unknown reason. ” The reason string is sent to the client in the HTTP
response line. Use this function to set the status of the response before calling
the function prot ocol _start_response.

The following is a list of valid status code constants:

PROTOCOL_CONTI NUE
PROTOCOL_SW TCHI NG
PROTOCOL_OK
PROTOCOL_CREATED
PROTOCOL_NO_RESPONSE
PROTOCOL_PARTI AL_CONTENT
PROTOCOL_REDI RECT
PROTOCOL_NOT_MODI FI ED
PROTOCOL_BAD_REQUEST
PROTOCOL_UNAUTHORI ZED

Chapter 5, NSAPI Function Reference 157

NSAPI Functions (in Alphabetical Order)

Syntax

Returns

Parameters

Example

Seealso

PROTOCOL_FORBI DDEN
PROTOCOL_NOT_FOUND
PROTOCOL_METHOD_NOT_ALLOWED
PROTOCOL_PROXY_UNAUTHOR! ZED
PROTOCOL_CONFLI CT
PROTOCOL_LENGTH_REQUI RED
PROTOCOL_PRECONDI TI ON_FAI L
PROTOCOL_ENTI TY_TOO LARGE
PROTOCOL_URI _TOO LARGE
PROTOCOL_SERVER ERROR
PROTOCOL_NOT_| MPLEMENTED
PROTOCOL_VERSI ON_NOT_SUPPORTED

voi d protocol _status(Session *sn, Request *rq, int n, char *r);

voi d, but it sets values in the Session/Request designated by sn/r q for the
status code and the reason string

Sessi on *sn is the Session.
Request *rq is the Request.

The Sessi on and Request parameters are the same as the ones passed into
your SAF.

i nt n is one of the status code constants above.

char *r is the reason string.

/* if we find extra path-info, the URL was bad so tell the */
/* browser it was not found */
if (t = pblock_findval ("path-info", rg->vars)) {
protocol _status(sn, rq, PROTOCOL_NOT_FOUND, NULL);
l og_error(LOG WARN, "function-name", sn, rq, "% not found",
pat h);
return REQ ABORTED;
}

protocol _start_response

protocol_uri2url

The protocol _uri2url function takes strings containing the given URI prefix
and URI suffix, and creates a newly-allocated fully qualified URL in the form
http://(server):(port)(prefix)(suffix).See

protocol _uri2url _dynam c.

158 NSAPI Programmer’s Guide

Syntax
Returns

Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

If you want to omit either the URI prefix or suffix, use "" instead of NULL as
the value for either parameter.

char *protocol _uri2url (char *prefix, char *suffix);
A new string containing the URL

char *prefix is the prefix.
char *suffix is the suffix.

protocol _start_response, protocol _status, pblock_nvinsert,
protocol _uri 2url _dynam c

protocol_uri2url_dynamic

Syntax

Returns

Parameters

Seealso

The protocol _uri2url function takes strings containing the given URI prefix
and URI suffix, and creates a newly-allocated fully qualified URL in the form
http://(server):(port)(prefix)(suffix).

If you want to omit either the URI prefix or suffix, use "" instead of NULL as
the value for either parameter.

The protocol _uri 2url _dynani ¢ function is similar to the

prot ocol _uri 2url function but should be used whenever the Sessi on and
Request structures are available. This ensures that the URL that it constructs
refers to the host that the client specified.

char *protocol _uri2url (char *prefix, char *suffix, Session *sn,
Request *rq);

A new string containing the URL
char *prefix is the prefix.
char *suffix is the suffix.
Sessi on *sn is the Session.
Request *rq is the Request.

The Sessi on and Request parameters are the same as the ones passed into
your SAF.

protocol _start_response, protocol _status, protocol _uri2url

Chapter 5, NSAPI Function Reference 159

NSAPI Functions (in Alphabetical Order)

R

REALLOC

Warning

Syntax
Returns

Parameters

Example

Seealso

The REALLOC macro is a platform-independent substitute for the C library
routine r eal | oc. It changes the size of a specified memory block that was
originally created by MALLOC, CALLCC, or STRDUP. The contents of the object
remains unchanged up to the lesser of the old and new sizes. If the new size is
larger, the new space is uninitialized.

Calling REALLQC for a block that was allocated with PERM_MALLCC,
PERM _CALLCC, or PERM _STRDUP will not work.

voi d *REALLOC(void *ptr, int size);
A pointer to the new space if the request could be satisfied.

voi d *ptr is a (void *) pointer to a block of memory. If the pointer is not one
created by MALLOC, CALLOC, or STRDUP, the behavior is undefined.

i nt size is the number of bytes to allocate.

char *nane;
name = (char *) MALLOC(256);
i f (Not Bi gEnough())
nane = (char *) REALLOC(512);

MALLOC, FREE, STRDUP, CALLOC, PERM MALLOC, PERM FREE,
PERM REALLCC, PERM CALLOC, PERM STRDUP

request_header

Syntax

Returns

The request _header function finds an entry in the pbl ock containing the
client’'s HTTP request headers (r g- >header s). You must use this function
rather than pbl ock_fi ndval when accessing the client headers since the
server may begin processing the request before the headers have been
completely

i nt request_header(char *name, char **val ue, Session *sn,
Request *rq);

A result code, REQ PROCEED if the header was found, REQ ABORTED if the
header was not found, REQ EXI T if there was an error reading from the client.

160 NSAPI Programmer’s Guide

Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

char *nane is the name of the header.

char **val ue is the address where the function will place the value of the
specified header. If none is found, the function stores a NULL.

Sessi on *sn is the Session.
Request *rq is the Request.

The Sessi on and Request parameters are the same as the ones passed into
your SAF.

request _create, request _free

request_stat_path

Syntax

Returns

Parameters

Example

Seealso

The request _stat_pat h function returns the file information structure for a
specified path or, if none is specified, the pat h entry in the var s pblock in the
specified Request structure. If the resulting file name points to a file that the
server can read, request _st at _pat h returns a new file information structure.
This structure contains information on the size of the file, its owner, when it
was created, and when it was last modified.

You should use r equest _st at _pat h to retrieve information on the file you are
currently accessing (instead of calling st at directly), because this function
keeps track of previous calls for the same path and returns its cached
information.

struct stat *request_stat_path(char *path, Request *rq);

Returns a pointer to the file information structure for the file named by the
pat h parameter. Do not free this structure. Returns NULL if the file is not valid
or the server cannot read it. In this case, it also leaves an error message
describing the problem in rqg- >staterr.

char *path is the string containing the name of the path. If the value of pat h
is NULL, the function uses the pat h entry in the var s pblock in the Request
structure denoted by r q.

Request *rq is the request identifier for a server application function call.
fi = request_stat_path(path, rq);

request _create, request_free, request_header

Chapter 5, NSAPI Function Reference 161

NSAPI Functions (in Alphabetical Order)

request_translate_uri

Syntax

Returns

Parameters

Seealso

S

The request _transl ate_uri function performs virtual to physical mapping
on a specified URI during a specified session. Use this function when you want
to determine which file would be sent back if a given URI is accessed.

char *request_translate_uri(char *uri, Session *sn);

A path string, if it performed the mapping or NULL if it could not perform the
mapping

char *uri isthe name of the URI.

Sessi on *sn is the Sessi on parameter that is passed into your SAF.

request _create, request_free, request_header

session_maxdns

Syntax

Returns

Parameters

The sessi on_naxdns function resolves the IP address of the client associated
with a specified session into its DNS name. It returns a newly allocated string.
You can use sessi on_maxdns to change the numeric IP address into
something more readable.

char *sessi on_maxdns(Sessi on *sn);

A string containing the host name or NULL if the DNS name cannot be found
for the IP address

Sessi on *sn is the Session.

The Sessi on is the same as the one passed to your SAF.

shexp_casecmp

The shexp_casecnp function validates a specified shell expression and
compares it with a specified string. It returns one of three possible values
representing match, no match, and invalid comparison. The comparison (in
contrast to that of the shexp_cnp function) is not case-sensitive.

162 NSAPI Programmer’s Guide

Syntax

Returns

Parameters

Seealso

shexp_cmp

Syntax

Returns

Parameters

Example

Seealso

NSAPI Functions (in Alphabetical Order)

Use this function if you have a shell expression like *. net scape. comand you
want to make sure that a string matches it, such as f 0o. net scape. com

i nt shexp_casecnp(char *str, char *exp);

0 if a match was found.
1 if no match was found.

- 1 if the comparison resulted in an invalid expression.

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

shexp_cnp, shexp_match, shexp_valid

The shexp_casecnp function validates a specified shell expression and
compares it with a specified string. It returns one of three possible values
representing match, no match, and invalid comparison. The comparison (in
contrast to that of the shexp_casecnp function) is case-sensitive.

Use this function if you have a shell expression like *. net scape. comand you
want to make sure that a string matches it, such as f 0o. net scape. com

int shexp_cmp(char *str, char *exp);

0 if a match was found.

1 if no match was found.

- 1 if the comparison resulted in an invalid expression.

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.
/* Use wildcard nmatch to see if this path is one we want */
char *path;

char *match = "/usr/netscape/*";

if (shexp_cmp(path, match) != 0)
return REQ NOACTI ON, /* no match */

shexp_casecnp, shexp_match, shexp_valid

Chapter 5, NSAPI Function Reference 163

NSAPI Functions (in Alphabetical Order)

shexp_match

Syntax

Returns

Parameters
Seealso

shexp_valid

Syntax

Returns

Parameters

Seealso

The shexp_mat ch function compares a specified pre-validated shell expression
against a specified string. It returns one of three possible values representing
match, no match, and invalid comparison. The comparison (in contrast to that
of the shexp_casecnp function) is case-sensitive.

The shexp_mat ch function doesn’t perform validation of the shell expression;
instead the function assumes that you have already called shexp_val i d.

Use this function if you have a shell expression like *. net scape. comand you
want to make sure that a string matches it, such as f oo. net scape. com

i nt shexp_match(char *str, char *exp);

0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.
char *str is the string to be compared.

char *exp is the pre-validated shell expression (wildcard pattern) to compare
against.

shexp_casecnp, shexp_cnp, shexp_valid

The shexp_val i d function validates a specified shell expression named by
exp. Use this function to validate a shell expression before using the function
shexp_mat ch to compare the expression with a string.

i nt shexp_valid(char *exp);

The constant NON_SXP if exp is a standard string.
The constant I NVALI D_SXP if exp is a shell expression, but invalid.
The constant VALI D_SXP if exp is a valid shell expression.

char *exp is the shell expression (wildcard pattern) to be validated.

shexp_casecnp, shexp_match, shexp_cnp

164 NSAPI Programmer’s Guide

STRDUP

Syntax
Returns
Parameters

Example

Seealso

NSAPI Functions (in Alphabetical Order)

The STRDUP macro is a platform-independent substitute for the C library routine
st rdup. It creates a new copy of a string in the request’s memory pool.

The STRDUP routine is functionally equivalent to:

newstr = (char *) MALLOC(strlen(str) + 1);
strcpy(newstr, str);

A string created with STRDUP should be disposed with FREE.
char *STRDUP(char *ptr);

A pointer to the new string.

char *ptr is a pointer to a string.

char *nanme

1 = "MyNane";
char *nane2 =

STRDUP(nanel) ;

MALLCOC, FREE, CALLOC, REALLCC, PERM MALLOC, PERM FREE,
PERM CALCC, PERM REALLOC, PERM STRDUP

system_errmsg

Syntax

Returns

Parameters

Seealso

The syst em errnmsg function returns the last error that occurred from the most
recent system call. This function is implemented as a macro that returns an
entry from the global array sys_err | i st. Use this macro to help with 1/0O error
diagnostics.

char *system errmsg(int parantl);

A string containing the text of the latest error message that resulted from a
system call. Do not FREE this string.

i nt paraml is reserved, and should always have the value 0.
system fopenRO, system fopenRW system fopenWA, system | seek,

system fread, systemfwite, systemfwite_atonc,
system fl ock, system ul ock, systemfclose

Chapter 5, NSAPI Function Reference 165

NSAPI Functions (in Alphabetical Order)

system_fclose

Syntax

Returns
Parameters

Example

Seealso

system_flock

Syntax

Returns

Parameters

Seealso

The system f cl ose function closes a specified file descriptor. The
syst em f cl ose function must be called for every file descriptor opened by
any of the syst em f open functions.

int systemfcl ose(SYS_FILE fd);
0 if the close succeeded or the constant | O ERROR if the close failed.
SYS FILE fd is the platform-independent file descriptor.

SYS_FI LE | ogf d;
system fcl ose(l ogfd);

system errmnsg, system fopenRO system fopenRW system fopenWA,
system | seek, systemfread, systemfwite,
systemfwite_atomc, systemflock, systemul ock

The system fl ock function locks the specified file against interference from

other processes. Use system fl ock if you do not want other processes using
the file you currently have open. Overusing file locking can cause performance
degradation and possibly lead to deadlocks.

int systemflock(SYS FILE fd);

The constant | O K if the lock succeeded or the constant | O ERROR if the lock
failed

SYS FILE fd is the platform-independent file descriptor.
systemerrnsg, systemfopenRO system fopenRW system fopenWA,

system | seek, systemfread, systemfwite,
systemfwite_atom c, systemul ock, system fclose

system_fopenRO

The syst em f openRO function opens the file identified by pat h in read-only
mode and returns a valid file descriptor. Use this function to open files that will
not be modified by your program. In addition, you can use syst em f openROt0
open a new file buffer structure using fi | ebuf _open.

166 NSAPI Programmer’s Guide

Syntax

Returns

Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

SYS_FI LE system fopenRQ(char *path);

The system-independent file descriptor (SYS_FI LE) if the open succeeded or 0
if the open failed

char *path is the file name.
systemerrnsg, systemfopenRW system fopenWA, system| seek,

system fread, systemfwite, systemfwite_atomc,
system fl ock, systemul ock, systemfclose

system_fopenRW

Syntax

Returns

Parameters

Example

Seealso

The syst em f openRWfunction opens the file identified by pat h in read-write
mode and returns a valid file descriptor. If the file already exists,

syst em f openRWdoes not truncate it. Use this function to open files that will
be read from and written to by your program.

SYS _FI LE system fopenRW char *path);

The system-independent file descriptor (SYS_FI LE) if the open succeeded or 0
if the open failed.

char *path is the file name.

SYS _FI LE fd;
fd = system fopenRQ(pat hnane) ;
if (fd == SYS_ERROR FD)

br eak;

system errmnmsg, systemfopenRO system fopenWA, system | seek,
system fread, systemfwite, systemfwite_atonc,
system fl ock, system ul ock, systemfclose

system_fopenWA

Syntax

Returns

The syst em f openWA function opens the file identified by pat h in write-
append mode and returns a valid file descriptor. Use this function to open
those files that your program will append data to.

SYS_FI LE system fopenWA(char *path);

The system-independent file descriptor (SYS_FI LE) if the open succeeded or 0
if the open failed.

Chapter 5, NSAPI Function Reference 167

NSAPI Functions (in Alphabetical Order)

Parameters

Seealso

system_fread

Syntax

Returns

Parameters

Seealso

char *path is the file name.

system errnsg, systemfopenRO system fopenRW system| seek,
system fread, systemfwite, systemfwite_atonc,
system fl ock, systemul ock, systemfclose

The system fread function reads a specified number of bytes from a
specified file into a specified buffer. It returns the number of bytes read. Before
system f read can be used, you must open the file using any of the

syst em f open functions, except syst em f openWA.

int systemfread(SYS FILE fd, char *buf, int sz);

The number of bytes read, which may be less than the requested size if an error
occurred or the end of the file was reached before that number of characters
were obtained.

SYS FILE fd is the platform-independent file descriptor.

char *buf is the buffer to receive the bytes.

i nt sz is the number of bytes to read.

system errmnmsg, system fopenRO system fopenRW system fopenWA,

system | seek, systemfwite, systemfwite_atonc,
system fl ock, systemul ock, systemfclose

system_fwrite

Syntax

Returns

Parameters

The system fwrite function writes a specified humber of bytes from a
specified buffer into a specified file.

Before system fwri t e can be used, you must open the file using any of the
syst em f open functions, except syst em f openRQO.

int systemfwite(SYS_FILE fd, char *buf, int sz);

The constant | O K if the write succeeded or the constant | O ERROR if the
write failed.

SYS FILE fd is the platform-independent file descriptor.
char *buf is the buffer containing the bytes to be written.

168 NSAPI Programmer’s Guide

Seealso

NSAPI Functions (in Alphabetical Order)

int sz is the number of bytes to write to the file.

system errnsg, systemfopenRO system fopenRW system fopenWA,
system | seek, systemfread, systemfwite_atonic, systemfl ock,
system ul ock, system fcl ose

system_fwrite_atomic

Syntax

Returns

Parameters

Example

Seealso

The system fwrite_aton c function writes a specified number of bytes from
a specified buffer into a specified file. The function also locks the file prior to
performing the write, and then unlocks it when done, thereby avoiding
interference between simultaneous write actions. Before

system fwite_atoni c can be used, you must open the file using any of the
syst em f open functions, except syst em f openRQO.

int systemfwite_atom c(SYS_FILE fd, char *buf, int sz);

The constant | O K if the write/lock succeeded or the constant | O ERRCR if the
write/lock failed.

SYS FILE fd is the platform-independent file descriptor.
char *buf is the buffer containing the bytes to be written.

int sz isthe number of bytes to write to the file.

SYS_FI LE | ogf d;

char *lognsg = "An error occurred."”;
systemfwite_atom c(l ogfd, |ognsg, strlen(lognsg));

system errnsg, systemfopenRO system fopenRW system fopenWA,
system | seek, systemfread, systemfwite, systemflock,
system ul ock, system fcl ose

system_gmtime

Syntax

The system gnti me function is a thread-safe version of the standard gnt i me
function. It returns the current time adjusted to Greenwich Mean Time.

struct tm*systemgmtine(const tine_t *tp, const struct tm
*res);

Chapter 5, NSAPI Function Reference 169

NSAPI Functions (in Alphabetical Order)

Returns A pointer to a calendar time (t m) structure containing the GMT time.
Depending on your system, the pointer may point to the data item represented
by the second parameter, or it may point to a statically-allocated item. For
portability, do not assume either situation.

Parameters time_t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (t m) structure.
Example tine_t tp;

struct tmres, *resp;

tp = time(NULL);

resp = systemagntinme(&p, &res);

Seealso systemlocaltime, util_strftime

system_localtime

The system | ocal ti ne function is a thread-safe version of the standard
| ocal ti me function. It returns the current time in the local time zone.

Syntax struct tm *system/localtine(const tine_t *tp, const struct tm
*res);

Returns A pointer to a calendar time (t m) structure containing the local time. Depending
on your system, the pointer may point to the data item represented by the
second parameter, or it may point to a statically-allocated item. For portability,
do not assume either situation.

Parameters time_t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (t m) structure.

Seealso systemgntinme, util_strftinme

system_lIseek

ThelOsyst em | seek function sets the file position of a file. This affects where
data from system fread or system fwite is read or written.

Syntax int system|seek(SYS FILE fd, int offset, int whence);

Returns the offset, in bytes, of the new position from the beginning of the file if the
operation succeeded or -1 if the operation failed.

Parameters SYS_FILE fd is the platform-independent file descriptor.

170 NSAPI Programmer’s Guide

Seealso

NSAPI Functions (in Alphabetical Order)

i nt of fset is a number of bytes relative to whence. It may be negative.
i nt whence is a one of the following constants:
SEEK_SET, from the beginning of the file.
SEEK_CUR, from the current file position.
SEEK_END, from the end of the file.
system errmnsg, system fopenRO system fopenRW system fopenWA,

system fread, systemfwite, systemfwite_atonc,
system fl ock, system ul ock, systemfclose

system_rename

Syntax
Returns

Parameters

system_ulock

Syntax

Returns

Parameters

Seealso

The system renane function renames a file. It may not work on directories if
the old and new directories are on different file systems.

int systemrenane(char *old, char *new);
0 if the operation succeeded or -1 if the operation failed.

char *ol d is the old name of the file.

char *new is the new name for the file:

The syst em ul ock function unlocks the specified file that has been locked by
the function syst em | ock. For more information about locking, see
system fl ock.

int systemul ock(SYS _FILE fd);

The constant | O_OK if the operation succeeded or the constant | O ERRCR if the
operation failed

SYS FILE fd is the platform-independent file descriptor.
system errmnmsg, system fopenRO system fopenRW system fopenWA,

system fread, systemfwite, systemfwite_atonc,
system fl ock, system fclose

Chapter 5, NSAPI Function Reference 171

NSAPI Functions (in Alphabetical Order)

system_unix2local

Syntax

Returns

Parameters

Seealso

The syst em uni x2l ocal function converts a specified Unix-style pathname to
a local file system pathname. Use this function when you have a file name in
the Unix format (such as one containing forward slashes), and you need to
access a file on another system like Windows NT. You can use

syst em uni x2l ocal to convert the Unix file name into the format that
Windows NT accepts. In the Unix environment, this function does nothing, but
may be called for portability.

char *system uni x2l ocal (char *path, char *I|p);
A pointer to the local file system path string

char *path is the Unix-style pathname to be converted.
char *|p is the local pathname.

You must allocate the parameter | p, and it must contain enough space to hold
the local pathname.

system fclose, systemflock, systemfopenRO system fopenRW
system fopenWA, systemfwite

systhread_attach

Syntax
Returns
Parameters

Seealso

The syst hread_attach function makes an existing thread into a platform-
independent thread.

SYS_THREAD syst hread_attach(voi d);
A SYS_THREAD pointer to the platform-independent thread.
none.

systhread_current, systhread_getdata, systhread_init,
syst hread_newkey, systhread_setdata, systhread_sleep,
systhread_start, systhread_term nate, systhread_tinerset

systhread_current

Syntax

The syst hread_current function returns a pointer to the current thread.

SYS_THREAD syst hread_current (voi d);

172 NSAPI Programmer’s Guide

Returns

Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

A SYS_THREAD pointer to the current thread
none.
systhread_getdata, systhread_newkey, systhread_setdata,

systhread_sl eep, systhread_start, systhread_term nate,
systhread_tinerset

systhread_getdata

Syntax

Returns

Parameters

Seealso

The syst hread_get data function gets data that is associated with a specified
key in the current thread.

voi d *systhread_getdata(int key);

A pointer to the data that was earlier used with the syst hr ead_set key
function from the current thread, using the same value of key if the call
succeeds. Returns NULL if the call did not succeed, for example if the

syst hread_set key function was never called with the specified key during
this session

i nt key is the value associated with the stored data by a syst hread_set dat a
function. Keys are assigned by the syst hr ead_newkey function.

systhread_current, systhread_newkey, systhread_setdata,
systhread_sl eep, systhread_start, systhread_term nate,
systhread_tinerset

systhread_newkey

Syntax

Returns
Parameters

Seealso

The syst hread_newkey function allocates a new integer key (identifier) for
thread-private data. Use this key to identify a variable that you want to localize
to the current thread; then use the syst hr ead_set dat a function to associate a
value with the key.

i nt systhread_newkey(void);

An integer key.

none.

systhread_current, systhread_getdata, systhread_setdata,

systhread_sl eep, systhread_start, systhread_term nate,
systhread_ti nerset

Chapter 5, NSAPI Function Reference 173

NSAPI Functions (in Alphabetical Order)

systhread_setdata

Syntax

Returns

Parameters

Seealso

The syst hread_set dat a function associates data with a specified key
number for the current thread. Keys are assigned by the syst hr ead_newkey
function.

voi d systhread_setdata(int key, void *data);
voi d
i nt key is the priority of the thread.

voi d *dat a is the pointer to the string of data to be associated with the value
of key.

systhread_current, systhread_getdata, systhread_newkey,
systhread_sl eep, systhread_start, systhread_term nate,
systhread_tinerset

systhread_sleep

Syntax

Returns
Parameters

Seealso

The syst hread_sl eep function puts the calling thread to sleep for a given
time.

voi d systhread_sleep(int mlliseconds);

voi d

int nmilliseconds isthe number of milliseconds the thread is to sleep.
systhread_current, systhread_getdata, systhread_newkey,

systhread_setdata, systhread_start, systhread_term nate,
systhread_tinerset

systhread_start

Syntax

Returns

The systhread_start function creates a thread with the given priority,
allocates a stack of a specified number of bytes, and calls a specified function
with a specified argument.

SYS THREAD systhread_start(int prio, int stksz,
void (*fn)(void *), void *arg);

A new SYS_THREAD pointer if the call succeeded or the constant
SYS_THREAD ERRCR if the call did not succeed.

174 NSAPI Programmer’s Guide

Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

int prio is the priority of the thread. Priorities are system-dependent.

i nt stksz is the stack size in bytes. If st ksz is zero, the function allocates a
default size.

void (*fn)(void *) is the function to call.
voi d *ar g is the argument for the f n function.
systhread_current, systhread_getdata, systhread_newkey,

systhread_setdata, systhread_sl eep, systhread_term nate,
systhread_tinerset

systhread_timerset

Syntax

Returns
Parameters

Seealso

U

util_can_exec

Unix only

Syntax

Returns

The syst hread_ti nerset function starts or resets the interrupt timer interval
for a thread system.

Because most systems don’t allow the timer interval to be changed, this should
be considered a suggestion, rather than a command.

voi d systhread_timerset(int usec);

void

i nt usec is the time, in microseconds

systhread_current, systhread_getdata, systhread_newkey,

systhread_setdata, systhread_sl eep, systhread_start,
systhread_terninate

The uti | _can_exec function checks that a specified file can be executed,
returning either a 1 (executable) or a 0. The function checks to see if the file
can be executed by the user with the given user and group ID.

Use this function before executing a program using the exec system call.
int util_can_exec(struct stat *finfo, uid_t uid, gid_t gid);

1 if the file is executable or 0 if the file is not executable.

Chapter 5, NSAPI Function Reference 175

NSAPI Functions (in Alphabetical Order)

Parameters

Seealso

stat *finfo isthe stat structure associated with a file.
uid_t uid isthe Unix user id.

gid_t gid isthe Unix group id. Together with ui d, this determines the
permissions of the Unix user.

util _env_create, util_getline, util_hostnane

util_chdir2path

Syntax
Returns

Parameters

The uti | _chdir2pat h function changes the current directory to a specified
directory, where you will access a file.

When running under Windows NT, use a critical section to ensure that more
than one thread does not call this function at the same time.

Use uti | _chdir2pat h when you want to make file access a little quicker,
because you do not need to use a full paths.

int util_chdir2path(char *path);
0 if the directory was changed or -1 if the directory could not be changed.

char *path is the name of a directory.
The parameter must be a writable string because it isn't permanently modified.

util_chdir2path

Syntax

Returns

Parameters

The uti | _chdir2pat h function changes the current directory to a specified
directory, where you will access a file.

When running under Windows NT, use a critical section to ensure that more
than one thread does not call this function at the same time.

Use uti | _chdir2pat h when you want to make file access a little quicker,
because you do not need to use a full paths.

int util_chdir2path(char *path);
0 if the directory was changed or -1 if the directory could not be changed.

char *path is the name of a directory.

The parameter must be a writable string because it isn't permanently modified.

176 NSAPI Programmer’s Guide

NSAPI Functions (in Alphabetical Order)

util_cookie_ find

Syntax

Returns

Parameters

util_env_find

Syntax

Returns

Parameters

Seealso

util_env_free

Syntax

Returns

New in iPlanet Web Server 4.0.

The util _cookie_fi nd function finds a specific cookie in a cookie string and
returns its value.

char *util _cookie_find(char *cookie, char *nane);

If successful, returns a pointer to the NULL-terminated value of the cookie.
Otherwise, returns NULL. This function modifies the cookie string parameter by
null-terminating the name and value.

char *cooki e is the value of the Cookie: request header.

char *nane is the name of the cookie whose value is to be retrieved.

The util _env_find function locates the string denoted by a name in a
specified enviroment and returns the associated value. Use this function to find
an entry in an environment.

char *util _env_find(char **env, char *nane);

The value of the environment variable if it is found or NULL if the string was
not found.

char **env is the environment.

char *nane is the name of an environment variable in env.

util _env_replace, util_env_str, util_env_free, util_env_create

The util _env_free function frees a specified environment. Use this function
to deallocate an environment you created using the function
util _env_create.

void util _env_free(char **env);

voi d

Chapter 5, NSAPI Function Reference 177

NSAPI Functions (in Alphabetical Order)

Parameters

Seealso

char **env is the environment to be freed.

util _env_replace, util_env_str, util_env_find, util_env_create

util_env_replace

Syntax

Returns

Parameters

Seealso

util_env_str

Syntax
Returns

Parameters

Seealso

The util _env_repl ace function replaces the occurrence of the variable
denoted by a name in a specified environment with a specified value. Use this
function to change the value of a setting in an environment.

void util _env_replace(char **env, char *nane, char *val ue);
voi d

char **env is the environment.

char *nane is the name of a name-value pair.

char *val ue is the new value to be stored.

util _env_str, util _env_free, util_env_find, util_env_create

The uti | _env_str function creates an environment entry and returns it. This
function does not check for non alphanumeric symbols in the name (such as
the equal sign “="). You can use this function to create a new environment
entry.

char *util _env_str(char *name, char *val ue);
A newly-allocated string containing the name-value pair

char *nane is the name of a name-value pair.

char *val ue is the new value to be stored.

util _env_replace, util_env_free, util_env_find, util_env_create

178 NSAPI Programmer’s Guide

util_getline

Syntax

Returns

Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

The uti| _getline function scans the specified file buffer to find a line-feed or
carriage-return/line-feed terminated string. The string is copied into the
specified buffer, and NULL-terminates it. The function returns a value that
indicates whether the operation stored a string in the buffer, encountered an
error, or reached the end of the file.

Use this function to scan lines out of a text file, such as a configuration file.
int util _getline(filebuf *buf, int |ineno, int nmaxlen, char *line);

0 if successful. | i ne contains the string.
1 if the end of file was reached. | i ne contains the string.
-1 if an error occurred. | i ne contains a description of the error.

filebuf *buf is the file buffer to be scanned.

int lineno is used to include the line number in the error message when an
error occurs. The caller is responsible for making sure the line number is
accurate.

i nt max! en is the maximum number of characters that can be written into | .

char *1 is the buffer in which to store the string. The user is responsible for
allocating and deallocating | i ne.

util _can_exec, util_env_create, util_hostnane

util_hostname

Syntax

Returns

Parameters

The util _host name function retrieves the local host name and returns it as a
string. If the function cannot find a fully-qualified domain name, it returns
NULL. You may reallocate or free this string. Use this function to determine the
name of the system you are on.

char *util _hostnane(void);

If a fully-qualified domain name was found, returns a string containing that
name otherwise returns NULL if the fully-qualified domain name was not
found.

none.

Chapter 5, NSAPI Function Reference 179

NSAPI Functions (in Alphabetical Order)

util_is_mozilla

Syntax

Returns

Parameters

Seealso

util_is_url

Syntax

Returns

Parameters

Seealso

util_itoa

Syntax

Returns

The util _i s_nozill a function checks whether a specified user-agent header
string is a Netscape browser of at least a specified revision level, returning a 1 if
it is and 0 otherwise. It uses strings to specify the revision level to avoid
ambiguities like 1.56 > 1.5.

int util_is_nozilla(char *ua, char *major, char *minor);

1 if the user-agent is a Netscape browser or 0 if the user-agent is not a Netscape
browser

char *ua is the user-agent string from the request headers.
char *maj or is the major release number (to the left of the decimal point).
char *minor is the minor release number (to the right of the decimal point).

util _is_url, util_later_than

The util _i s_url function checks whether a string is a URL, returning 1 if it is
and 0 otherwise. The string is a URL if it begins with alphabetic characters
followed by a colon.

int util _is_url(char *url);

1 if the string specified by ur ! is a URL or 0 if the string specified by ur| is not
a URL.

char *url is the string to be examined.
util _is nmozilla, util _later_than
The util _itoa function converts a specified integer to a string, and returns

the length of the string. Use this function to create a textual representation of a
number.
int util __itoa(int i, char *a);

The length of the string created

180 NSAPI Programmer’s Guide

Parameters

NSAPI Functions (in Alphabetical Order)

int i isthe integer to be converted.

char *a is the ASCII string that represents the value. The user is responsible
for the allocation and deallocation of a, and it should be at least 32 bytes long.

util_later_than

Syntax

Returns

Parameters

Seealso

The uti | _I at er _t han function compares the date specified in a time
structure against a date specified in a string. If the date in the string is later than
or equal to the one in the time structure, the function returns 1. Use this
function to handle RFC 822, RFC 850, and ctime formats.

int util_later_than(struct tm*Ins, char *ins);

1 if the date represented by i ns is the same as or later than that represented by
the | ms or 0 if the date represented by i ns is earlier than that represented by
the | ms.

tm *1 ns is the time structure containing a date.
char *ins is the string containing a date.

util _strftine

util_sh_escape

Syntax
Returns
Parameters

Seealso

The util _sh_escape function parses a specified string and places a backslash
(\) in front of any shell-special characters, returning the resultant string. Use
this function to ensure that strings from clients won't cause a shell to do
anything unexpected.

The shell-special characters are: & * "\ " | *?2~<>A()[1{}$\\ #!
char *util _sh_escape(char *s);

A newly allocated string

char *s is the string to be parsed.

util _uri_escape

Chapter 5, NSAPI Function Reference 181

NSAPI Functions (in Alphabetical Order)

util_snprintf

The util _snprintf function formats a specified string, using a specified
format, into a specified buffer using the pri nt f -style syntax and performs
bounds checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
run-time library of your compiler.

Syntax int util_snprintf(char *s, int n, char *fnt, ...);
Returns The number of characters formatted into the buffer.
Parameters char *s is the buffer to receive the formatted string.

i nt n is the maximum number of bytes allowed to be copied.

char *fnt is the format string. The function handles only % and % strings; it
does not handle any width or precision strings.

. represents a sequence of parameters for the pri ntf function.

Seealso util_sprintf, util_vsnprintf, util_vsprintf

util_sprintf

The util _sprintf function formats a specified string, using a specified
format, into a specified buffer using the pri nt f -style syntax without bounds
checking. It returns the number of characters in the formatted buffer.

Because uti | _sprintf doesn’'t perform bounds checking, use this function
only if you are certain that the string fits the buffer. Otherwise, use the function
util _snprintf.For more information, see the documentation on the pri nt f
function for the run-time library of your compiler.

Syntax int util_sprintf(char *s, char *fnt, ...);
Returns The number of characters formatted into the buffer.

Parameters char *s is the buffer to receive the formatted string.

char *fnt is the format string. The function handles only % and % strings; it
does not handle any width or precision strings.

. represents a sequence of parameters for the pri ntf function.

182 NSAPI Programmer’s Guide

Example

Seealso

NSAPI Functions (in Alphabetical Order)

char *| ognsg;

int |en;
| ognsg = (char *) MALLOC(256);
len = util _sprintf(lognmsg, "% % %\n", ip, method, uri);

util _snprintf, util_vsnprintf, util_vsprintf

util_strcasecmp

Syntax

Returns

Parameters

Seealso

util_strftime

Syntax

Returns

Parameters

The util _strcasecnp function performs a comparison of two alpha-numeric
strings and returns a -1, 0, or 1 to signal which is larger or that they are
identical.

The comparison is not case-sensitive.
int util_strcasecnp(const char *sl1, const char *s2);

1if s1 is greater than s2.
0 if s1 is equal to s2.

-1 if s1 is less than s2.

char *s1 is the first string.

char *s2 is the second string.

util _strncasecnp

The util _strftime function translates a t mstructure, which is a structure
describing a system time, into a textual representation. It is a thread-safe
version of the standard strfti me function

int util_strftime(char *s, const char *format, const struct tm

The number of characters placed into s, not counting the terminating NULL
character.

char *s is the string buffer to put the text into. There is no bounds checking,
so you must make sure that your buffer is large enough for the text of the date.

Chapter 5, NSAPI Function Reference 183

NSAPI Functions (in Alphabetical Order)

const char *fornmat is a format string, a bit like a pri ntf string in that it
consists of text with certain % substrings. You may use the constant
HTTP_DATE_FMT to create date strings in the standard internet format. For
more information, see the documentation on the pri ntf function for the run-
time library of your compiler. Refer to Appendix E, “Time Formats,” for details
on time formats.

const struct tm*t isa pointer to a calendar time (t m) struct, usually created
by the function system | ocal ti me or system gnti ne.

Seealso systemlocaltine, systemgntine

util_strncasecmp

The util _strncasecnp function performs a comparison of the first n
characters in the alpha-numeric strings and returns a -1, 0, or 1 to signal which
is larger or that they are identical.

The function’s comparison is not case-sensitive.
Syntax int util_strncasecnp(const char *sl1, const char *s2, int n);

Returns 1 if s1 is greater than s2.
0 if s1 is equal to s2.

-1 if s1 is less than s2.

Parameters char *s1 is the first string.
char *s2 is the second string.

i nt n is the number of initial characters to compare.

Seealso util_strcasecnp

util_uri_escape

The util _uri _escape function converts any special characters in the URI into
the URI format (%XX where XX is the hexadecimal equivalent of the ASCII
character), and returns the escaped string. The special characters are

o@#: +&* " <>, space, carriage-return, and line-feed.

Use uti | _uri_escape before sending a URI back to the client.

Syntax char *util _uri_escape(char *d, char *s);

184 NSAPI Programmer’s Guide

Returns

Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

The string (possibly newly allocated) with escaped characters replaced.

char *d is a string. If d is not NULL, the function copies the formatted string
into d and returns it. If d is NULL, the function allocates a properly-sized string
and copies the formatted special characters into the new string, then returns it.

The util _uri_escape function does not check bounds for the parameter d.
Therefore, if d is not NULL, it should be at least three times as large as the string
S.

char *s is the string containing the original unescaped URI.

util _uri_is_evil, util _uri_parse, util_uri_unescape

util_uri_is_evil

Syntax
Returns
Parameters

Seealso

The util _uri_is_evil function checks a specified URI for insecure path
characters. Insecure path characters include //,/./,/../ and/.,/.. (also for
NT. /) at the end of the URI. Use this function to see if a URI requested by the
client is insecure.

int util _uri_is_evil(char *t);
1 if the URI is insecure or 0 if the URI is OK.
char *t is the URI to be checked.

util _uri_escape, util _uri_parse

util_uri_parse

Syntax

Returns
Parameters

Seealso

The util _uri _parse function converts//,/./,and/*/../ into/ in the
specified URI (where * is any character other than /). You can use this function
to convert a URI's bad sequences into valid ones. First use the function

util _uri_is_evil to determine whether the function has a bad sequence.

void util _uri_parse(char *uri);
voi d
char *uri isthe URI to be converted.

util __uri_is_evil, util _uri_unescape

Chapter 5, NSAPI Function Reference 185

NSAPI Functions (in Alphabetical Order)

util_uri_unescape

The util _uri _unescape function converts the encoded characters of a URI
into their ASCII equivalents. Encoded characters appear as %XX where XX is a
hexadecimal equivalent of the character.

Syntax void util_uri_unescape(char *uri);
Returns void
Parameters char *uri isthe URI to be converted.

Seealso util_uri_escape, util _uri_is_evil, util _uri_parse

util_vsnprintf

The util _vsnprintf function formats a specified string, using a specified
format, into a specified buffer using the vpri nt f -style syntax and performs
bounds checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
run-time library of your compiler.

Syntax int util_vsnprintf(char *s, int n, register char *fnt, va_list
args);

Returns The number of characters formatted into the buffer
Parameters char *s is the buffer to receive the formatted string.

i nt n is the maximum number of bytes allowed to be copied.

regi ster char *fnt isthe format string. The function handles only %@ and
o strings; it does not handle any width or precision strings.

va_l i st args is an STD argument variable obtained from a previous call to
va_start.

Seealso util_sprintf, util_vsprintf
util_vsprintf
The util _vsprintf function formats a specified string, using a specified

format, into a specified buffer using the vpri nt f -style syntax without bounds
checking. It returns the number of characters in the formatted buffer.

186 NSAPI Programmer’s Guide

Syntax
Returns

Parameters

Seealso

NSAPI Functions (in Alphabetical Order)

For more information, see the documentation on the pri nt f function for the
run-time library of your compiler.

int util_vsprintf(char *s, register char *fm, va_list args);
The number of characters formatted into the buffer.

char *s is the buffer to receive the formatted string.

regi ster char *fnt isthe format string. The function handles only %@ and
% strings; it does not handle any width or precision strings.

va_l i st args is an STD argument variable obtained from a previous call to
va_start.

util _snprintf, util_vsnprintf

Chapter 5, NSAPI Function Reference 187

NSAPI Functions (in Alphabetical Order)

188 NSAPI Programmer’s Guide

Chapter

Examples of Custom SAFs

This chapter discusses examples of custom Sever Application Functions (SAFs)
for each directive in the request-response process. You may wish to use these
examples as the basis for implementing your own custom SAFs. For more
information about creating your own custom SAFs, see Chapter 4, “Creating
Custom SAFs.”

Before writing custom SAFs, you should be familiar with the request-response
process (discussed in Chapter 1, “Basics of Server Operation”) and the role of
the configuration file obj . conf (discussed in Chapter 2, “Syntax and Use of
obj.conf”).

Before writing your own SAF, check if an existing SAF serves your purpose.
The pre-defined SAFs are discussed in Chapter 3, “Predefined SAFs and the
Request Handling Process.”

For a list of the NSAPI functions for creating new SAFs, see Chapter 5, “NSAPI
Function Reference.”

This chapter has the following sections:
= Examples in the Build

« AuthTrans Example

= NameTrans Example

= PathCheck Example

= ObjectType Example

= Service Example

Chapter 6, Examples of Custom SAFs 189

Examples in the Build

= AddLog Example

Examples in the Build

The nsapi / exanpl es/ or pl ugi ns/ nsapi / exanpl es subdirectory within the
server installation directory contains examples of source code for SAFs.

You can use the exanpl e. nek makefile in the same directory to compile the
examples and create a library containing the functions in all the example files.

To test an example, load the exanpl es shared library into the iPlanet Web
Server by adding the following directive in the | ni t section of obj . conf:

Init fn=load-nodul es shlib=exanpl es. so/ dl
funcs=functionl, function2, function3

The f uncs parameter specifies the functions to load from the shared library.

If the example uses an initialization function, be sure to specify the initialization
function in the f uncs argument to | oad- nodul es, and also add an I ni t
directive to call the initialization function.

For example, the Pat hCheck example implements the restri ct - by- acf
function, which is initialized by the acf -i ni t function. The following directive
loads both these functions:

Init fn=load-nodul es yourlibrary funcs=acf-init,restrict-by-acf

The following directive calls the acf -i ni t function during server initialization:

Init fn=acf-init file=extra-arg

To invoke the new SAF at the appropriate step in the response handling
process, add an appropriate directive in the object to which it applies, for
example:

Pat hCheck fn=restrict-by-acf

After modifying obj . conf manually, you'll need to load the configuration files
in the Server Manager interface if it is open. If it is not open, you'll need to stop
and start the server to have your changes take effect, since the server loads
obj . conf during initialization.

190 NSAPI Programmer’s Guide

AuthTrans Example

After adding new I ni t directives to obj . conf, you always need to restart the
iPlanet Web Server to load the changes, since I ni t directives are only applied
during server initialization.

AuthTrans Example

This simple example of an Aut hTr ans function demonstrate how to use your
own custom ways of verifying that the username and password that a remote
client provided is accurate. This program uses a hard coded table of usernames
and passwords and checks a given user’s password against the one in the static
data array. The user db parameter is not used in this function.

Aut hTr ans directives work in conjunction with Pat hCheck directives.
Generally, an Aut hTr ans function checks if the username and password
associated with the request are acceptable, but it does not allow or deny access
to the request -- it leaves that to a Pat hCheck function.

Aut hTr ans functions get the username and password from the headers
associated with the request. When a client initially makes a request, the
username and password are unknown so the Aut hTr ans function and

Pat hCheck function work together to reject the request, since they can't
validate the username and password. When the client receives the rejection, the
usual response is for it to pop up a dialog box asking the user for their
username and password, and then the client submits the request again, this
time including the username and password in the headers.

In this example, the har dcoded- aut h function, which is invoked during the
Aut hTr ans step, checks if the username and password correspond to an entry
in the hardcoded table of users and passwords.

Installing the Example

To install the function on the iPlanet Web Server, add the following I ni t
directive at the beginning of obj . conf to load the compiled function:

Init fn=l oad-nodul es shlib=yourlibrary funcs=hardcoded-auth

Inside the default object in obj . conf add the following Aut hTr ans directive:

Aut hTrans fn=basi c-auth aut h-type="basi c" userfn=hardcoded-auth

Chapter 6, Examples of Custom SAFs 191

AuthTrans Example

user db=unused

Note that this function does not actually enforce authorization requirements, it
only takes given information and tells the server if it's correct or not. The

Pat hCheck function r equi r e- aut h performs the enforcement, so add the
following Pat hCheck directive also:

Pat hCheck fn=require-auth real ne"test real nf auth-type="basic"

Source Code

The source code for this example is in the aut h. c file in the nsapi / exanpl es/
or pl ugi ns/ nsapi / exanpl es subdirectory of the server root directory.

#i ncl ude nsapi.h

typedef struct {
char *nane;
char *pw;

} user_s;

/* This is the array of users and passwords */

static user_s user_set[] = {
{"ni kki", "bones"},
{"boots", "frisbhee"},

{"jack", "steak"},
{"topper", "kibble"},
{"beul ah", "rollover"},
{NULL, NULL}

b

#i ncl ude "frame/l og. h"

#i fdef __cpl uspl us

extern "C'
#endi f

/* hardcoded_auth is our custom SAF */

NSAPI _PUBLI C i nt hardcoded_aut h(pbl ock *param Session *sn, Request *rq)
{

/* Paraneters given to us by auth-basic.

* Use pblock_findval to find the value of a specific paraneter

*/

/* pwfile will be null, but that's OK because we don't use it */
char *pwfile = pblock_findval("userdb”, param);

192 NSAPI Programmer’s Guide

NameTrans Example

/* Get the user and password */
char *user = pbl ock_findval ("user", param;
char *pw = pbl ock_findval ("pw', paran);

/* Tenp variables */
register int x;

/* lterate over the hardcoded array of users and passwords
* to see if the current user is in there.
*/

for(x = 0; user_set[x].name != NULL; ++x) {
/* 1If this isn't the user we want, keep going */
i f(strcnp(user, user_set[x].nane) != 0)
conti nue;

/* 1f this is the user we want, verify password.
* |f password is wong, log an error and return REQ NOACTI ON.
*/
i f(strcnp(pw, user_set[x].pw)) {
| og_error(LOG_SECURI TY, "hardcoded-auth", sn, rq,
"user % entered wong password", user);
return REQ_NOACTI ON,
}

/* 1f username and password are vaild, return REQ PROCEED */
return REQ_PROCEED;
}

/* 1f the usernane was not found in our array, log an error
* and return REQ NOACTI ON.
*/

| og_error(LOG_SECURI TY, "hardcoded-auth", sn, rq,
"unknown user %", user);

return REQ NOACTI ON,

NameTrans Example

The nt rans. c file in the nsapi / exanpl es/ or pl ugi ns/ nsapi / exanpl es

subdirectory of the server root directory contains source code for two example

NanmeTr ans functions:

e explicit_pathinfo

This example allows the use of explicit extra path information in a URL.

Chapter 6, Examples of Custom SAFs 193

NameTrans Example

e https_redirect

This example redirects the URL if the client is a particular version of
Netscape Navigator.

This section discusses the first example. Look at the source code in ntrans.c
for the second example.

Note: The main thing that a NameTrans function usually does is to convert the
logical URL in ppath inrg->vars to a physical pathname. However, the
example discussed here, explicit_pathinfo , does not translate the URL into
a physical pathname, it changes the value of the requested URL. See the second
example, https_redirect , inntrans.c for an example of a NameTrans
function that converts the value of ppath in rg->vars from a URL to a physical
pathname.

The explicit_pathinfo example allows URLs to explicitly include extra path
information for use by a CGI program. The extra path information is delimited
from the main URL by a specified separator, such as a comma.

For example:

http://server-nanel cgi/ marketing,/jan/rel eases/ hardware

In this case, the URL of the requested resource (which would be a CGI
program) is http:// ser ver - nanelcgi/marketing and the extra path
information to give to the CGI program is /jan/releases/hardware

When choosing a separator, be sure to pick a character that will never be used
as part of the real URL.

The explicit_pathinfo function reads the URL, strips out everything
following the comma and puts it in the path-info field of the vars field in the
request object (rg->vars). CGI programs can access this information through
the PATH_INFO environment variable.

One side effect of explicit_pathinfo is that the SCRIPT_NAMECGI
environment variable has the separator character tacked on the end.

Normally NameTrans directives return REQ_PROCEEWhen they change the
path so that the server does not process any more NameTrans directives.
However, in this case we want name translation to continue after we have
extracted the path info, since we have not yet translated the URL to a physical
pathname.

194 NSAPI Programmer’s Guide

NameTrans Example

Installing the Example

To install the function on the iPlanet Web Server, add the following I ni t
directive at the beginning of obj . conf to load the compiled function:

Init fn=load-nodul es shlib=yourlibrary funcs=explicit-pathinfo

Inside the default object in obj . conf add the following NaneTr ans directive:

NameTr ans fn=explicit-pathinfo separator=",6"

This NaneTr ans directive should appear before other NanmeTr ans directives in
the default object.

Source Code

This example is in the ntrans. c file in the nsapi / exanpl es/ or pl ugi ns/
nsapi / exanpl es subdirectory of the server root directory.

#i ncl ude nsapi.h

#i ncl ude <string. h> /* strchr */
#i ncl ude "frame/l og. h" /* log_error */

#i fdef __cplusplus
extern "C'
#endi f

/* explicit-pathinfo is our new NaneTrans SAF */

NSAPI _PUBLI C i nt explicit_pathinfo(pbl ock *pb, Session *sn, Request *rq)
{

/* The separator paraneter is specified in the directive line

* in obj.conf that invokes this function

* The separator separates the URL of the requested resource

* fromthe extra path information to put into PATH | NFO

*

/

char *sep = pbl ock_findval ("separator", pb);

/* Get the ppath fromthe vars field of the request object*/
char *ppath = pblock_findval ("ppath", rg->vars);

/* Tenp var */
char *t;

/* Verify correct usage */
if(!sep) {
| og_error(LOG_M SCONFI G "explicit-pathinfo", sn, rq

Chapter 6, Examples of Custom SAFs 195

PathCheck Example

"m ssing paraneter (need root)");
/* \When we abort, the default status code is 500 Server Error *
return REQ ABORTED;
}

/* Check for separator. If not there, don’'t do anything */
t = strchr(ppath, sep[0]);
if(lt)

return REQ_NOACTI ON,

/* 1f path contains separator, truncate path at the separator */
*t+s = 7\0

/* Put the extra path info into the path-info field of rqg->vars*/
pbl ock_nvi nsert("path-info", t, rg->vars);

/* Normally NaneTrans functions return REQ PROCEED when t hey change
* the path. However, we want nane translation to continue after we
* have extracted the extra path info since we haven’t translated the

* URL to a physical file name yet.

*

return REQ_NOACTION;

PathCheck Example

The example in this section demonstrates how to implement a custom SAF for
performing path checks. This example simply checks if the requesting host is
on a list of allowed hosts.

The I ni t function acf-init loads a file containing a list of allowable IP
addresses with one IP address per line. The Pat hCheck function

restrict_by_acf gets the IP address of the host that is making the request and
checks if it is on the list. If the host is on the list, it is allowed access otherwise
access is denied.

For simplicity, the stdio library is used to scan the IP addresses from the file.

Installing the Example

To load the shared object containing your functions add the following line in
the I ni t section of the obj . conf file:

Init fn=load-modules yourl i br ar y funcs=acf-init,restrict-by-acf

196 NSAPI Programmer’s Guide

PathCheck Example

To call acf-init to read the list of allowable hosts, add the following line to
the I ni t section in obj . conf. (This line must come after the one that loads the
library containing acf-init).

Init fn=acf-init file=fileContainingHostsList
To execute your custom SAF during the request-response process for some
object, add the following line to that object in the obj . conf file:

Pat hCheck fn=restrict-by-acf

Source Code

The source code for this example is in pcheck. c in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory within the server root directory.

#i ncl ude nsapi.h

/* Set hosts to NULL to prevent problens if acf-init is not called */
static char **hosts = NULL;

#i ncl ude <stdio. h>
#i ncl ude "base/ daenon. h"

#i ncl ude "base/util.h" /* util _sprintf */

#i ncl ude "frame/l og. h" /* log_error */

#i ncl ude "frane/ protocol.h" /* protocol _status */

/* The longest line we'll allowin an access control file */

#define MAX_ACF_LI NE 256

#i fdef __cpl uspl us

extern "C'
#endi f

/* Used to free static array on restart */
NSAPI _PUBLI C voi d acf_free(voi d *unused)

{
register int x;
for(x = 0; hosts[x]; ++Xx)
FREE(host s[x]);
FREE(host s) ;
hosts = NULL;
}

/* This is the initialization function that gets invoked

* during the Init stage in obj.conf.

* This function opens the customfile and reads the | P addresses
* of the allowed hosts into the gl obal variable hosts

*/

Chapter 6, Examples of Custom SAFs 197

PathCheck Example

NSAPI _PUBLI C int acf_init(pblock *pb, Session *sn, Request *rq)

{
/* The file paraneter is specified in the PathCheck directive
* that invokes this function.
*/
char *acf_file = pblock_findval ("file", pb);
/* Working variables */
int num hosts;
FILE *f;
char err[MAGNUS_ERROR_LEN] ;
char buf [MAX_ACF_LI NE] ;
/* Check usage. Note: Init functions have special error |ogging */
if(lacf_file) {
util _sprintf(err, "mssing paraneter to acf_init (need file)");
pbl ock_nvinsert("error", err, pb);
return REQ ABORTED;
}
/* Open the file containing the list of allowed hosts */
f = fopen(acf_file, "r");
/* Did we open it? */
if(rf) {
util _sprintf(err, "can't open access control file % (%)",
acf _file, systemerrnsg());
pbl ock_nvinsert("error", err, pb);
return REQ ABORTED;
}
/* Initialize hosts array */
num hosts = O;
hosts = (char **) MALLOC(1 * sizeof(char *));
hosts[0] = NULL;
whi | e(fgets(buf, MAX_ACF_LINE, f)) {
/* Blast linefeed that stdio helpfully | eaves on there *
buf[strlen(buf) - 1] ='\0";
hosts = (char **) REALLOQJ hosts, (numhosts + 2) * sizeof(char *));
host s[num host s++] = STRDUP(buf);
host s[num_hosts] = NULL;
}
/* Close the file */
fclose(f);
/* At restart, free hosts array */
daenon_atrestart (acf_free, NULL);
return REQ PROCEED;
}

/* restrict_by_acf is the new Pat hCheck SAF.

198 NSAPI Programmer’s Guide

ObjectType Example

* 1t checks if the requesting host is in the list of allowed hosts.
* The list of hosts is in the hosts[] array which was set up by

* acf-init during server initialization.
*/

NSAPI _PUBLIC int restrict_by_acf(pbl ock *pb, Session *sn, Request *rq)

{

/* No need to get any paranmeters fromthe directive in obj.conf. */

/* Working variables */

/* Get the client’s ip address */

char *remip = pblock_findval("ip", sn->client);
register int x;

/* If the hosts variable is not set, it means acf-init was not called
* s0 log an error and return REQ_ABORTED
if(hosts) {
log_error(LOG_MISCONFIG, "restrict-by-acf", sn, rq,
"restrict-by-acf called without call to acf-init");
/* The default abort status code is 500 Server Error */
return REQ_ABORTED,;
}

/* if hosts is defined, iterate through the hosts list to see
* if the host that sent the request is allowed access.

* If the host is on the list, all is well, so return REQ_NOACTION.

*
for(x = 0; hosts[x] != NULL; ++x) {
if(!strcmp(remip, hosts[x]))
return REQ_NOACTION;
}

/* If the requesting host is not on the list, access is denied */
/* Set response code to forbidden and return an error. *
protocol_status(sn, rq, PROTOCOL_FORBIDDEN, NULL);
return REQ_ABORTED,;

ObjectType Example

The example in this section demonstrates how to implement ht ml 2shtmi , a
custom SAF that instructs the server to treat a . ht mi file as a . shtnl file ifa

.shtm version of the requested file exists.

A well-behaved Obj ect Type function checks if the content type is already set,

and if so, does nothing except return REQ NOACTI ON.

if(pblock_findval(“content-type", rg->srvhdrs))
return REQ_NOACTION;

Chapter 6, Examples of Custom SAFs 199

ObjectType Example

The main thing an bj ect Type directive needs to do is to set the content type
(if it is not already set). This example sets it to magnus-i nt er nal / par sed-
ht m in the following lines:

/* Set the content-type to nagnus-internal/parsed-htm */
pbl ock_nvinsert ("content-type", "magnus-internal/parsed-htm",
rg->srvhdrs);

The ht m 2sht nl function looks at the requested file name. If it ends with
. ht M, the function looks for a file with the same base name, but with the
extension . sht m instead. If it finds one, it uses that path and informs the
server that the file is parsed HTML instead of regular HTML. Note that this
requires an extra st at call for every HTML file accessed.

Installing the Example

To load the shared object containing your function, add the following line in
the I ni t section of the obj . conf file :

Init fn=load-nodul es shlib=yourlibrary funcs=htnm 2sht ni

To execute the custom SAF during the request-response process for some
object, add the following line to that object in the obj . conf file:

bj ect Type fn=htm 2shtm

Source Code

The source code for this example is in ot ype. c in the nsapi / exanpl es/ or
pl ugi ns/ nsapi / exanpl es subdirectory within the server root directory.

include nsapi.h

#i ncl ude <string. h> /* strncpy */
#i ncl ude "base/util.h"

#i fdef __cpl usplus

extern "C'
#endi f

/* This is the custom SAF. Wenever a request is made for an

* html file, this SAF checks if another file with the same base nane
* but with a .shtm extension exists. If it does, it sets the

* type to magnus-internal/parsed-htm.

*/

200 NSAPI Programmer’s Guide

ObjectType Example

NSAPI _PUBLI C int htm 2shtnl (pbl ock *pb, Session *sn, Request *rq)
{

/* No need to get any paranmeters fromthe directive in obj.conf. */

/* Work variables */
/* Get the path fromthe request object */

pb_param *path = pbl ock_find("path", rg->vars);
struct stat finfo;

char *npath;

int basel en;

/* This is a nicely behaved Object Type function, so obey the rules
* and if the type has already been set, don't do anything.
*/
i f(pblock_findval ("content-type", rqg->srvhdrs))
return REQ_NOACTI ON,

/* If path does not end in .html, don’t do anything */

baselen = strlen(path->value) - 5;

if(strcasecmp(&path->value[baselen], ".html") != 0)
return REQ_NOACTION;

/* If we got this far, the file ends in .html */

/* Add 1 character to make room to convert html to shtml */
npath = (char *) MALLOC((baselen + 5) + 1 + 1);
strncpy(npath, path->value, baselen);
strepy(&npath[baselen], ".shtml");

/* If the .shtml version of the file does not exist,
* don't do anything */

if(stat(npath, &finfo) == -1) {
FREE(npath);
return REQ_NOACTION;
}

/* If the .shtml version of the file does exist, change the pathname
* of the requested file to the .shtml version

*/

FREE(path->value);

path->value = npath;

/* The server caches the stat() of the current path. Update it. *
(void) request_stat_path(NULL, rq);

/* Set the content-type to magnus-internal/parsed-html */
pblock_nvinsert("content-type", "magnus-internal/parsed-html",
rg->srvhdrs);

/* We have successfully set the type, so return REQ_PROCEED */
return REQ_PROCEED;

Chapter 6, Examples of Custom SAFs 201

Service Example

Service Example

This section discusses a very simple Ser vi ce function called

si nmpl e_servi ce. All this function does is send a message in response to a
client request. The message is initialized by the i ni t _si npl e_servi ce
function during server initialization.

For a more complex example, see the file servi ce. c in the exanpl es
directory, which is discussed in “More Complex Service Example.”

Installing the Example

To load the shared object containing your functions add the following line in
the I ni t section of the obj . conf file:

Init fn=load-nodul es shlib=yourlibrary funcs=sinple-service-
init,sinple-service

To call the si npl e-servi ce-i nit function to initialize the message
representing the generated output, add the following line to the | ni t section in
obj . conf. (This line must come after the one that loads the library containing
si npl e-service-init).

Init fn=sinple-service-init
gener at ed- out put =" <HI>Gener at ed out put nsg</ H1>"

To execute the custom SAF during the request-response process for some
object, add the following line to that object in the obj . conf file:

Service type="text/htm " fn=sinple-service

The t ype="t ext/ ht ml " argument indicates that this function is invoked during
the Ser vi ce stage only if the cont ent -t ype has been setto text/htm .

Source Code

#i ncl ude <nsapi . h>

static char *sinple_nsg = "default custonized content”

202 NSAPI Programmer’s Guide

Service Example

/* This is the initialization function.

* |t gets the value of the generated-output paraneter

* specified in the Init directive in obj.conf

*/

NSAPI _PUBLI C int init-sinple-service(pblock *pb, Session *sn,
Request *rq)

{
/* Get the message fromthe paraneter in the directive in obj.conf */
sinpl e_nsg = pbl ock_findval ("generated-output”, pb);
return REQ_PROCEED;

}

/* This is the custom zed Service SAF.
* |1t sends the "generated-output" nessage to the client.
*/
NSAPI _PUBLI C i nt sinpl e-servi ce(pbl ock *pb, Session *sn, Request *rq)
{
int return_val ue;
char nsg_l ength[8];

/* Use the protocol _status function to set the status of the
* response before calling protocol _start_response.

*/

protocol _status(sn, rg, PROTOCOL_OK, NULL);

/* Al though we woul d expect the CbjectType stage to

* set the content-type, set it here just to be

* conpletely sure that it gets set to text/htni.

*/

param free(pbl ock_renove("content-type", rq->srvhdrs));
pbl ock_nvinsert("content-type", "text/htm", rqg->srvhdrs);

/* 1f you want to use keepalive, need to set content-|ength header.
* The util _itoa function converts a specified integer to a string,
* and returns the length of the string. Use this

* function to create a textual representation of a nunber.

*/

util _itoa(strlen(sinple_nsg), nsg_l ength);
pbl ock_nvinsert("content-length", msg_l ength, rg->srvhdrs);

/* Send the headers to the client*/
return_val ue = protocol _start_response(sn, rq);
if (return_value == REQ NOACTI ON) {

/* HTTP HEAD i nstead of CET */

return REQ_PROCEED;

}
/* Wite the output using net_wite*/
return_value = net_wite(sn->csd, sinple_nsg, strlen(sinple_nsg));
if (return_value == | O ERROR) {
return REQ EXIT;

Chapter 6, Examples of Custom SAFs 203

AddLog Example

}
return REQ_PROCEED;

More Complex Service Example

The send- i mages function is a custom SAF which replaces the doi t . cgi
demonstration available on the Netscape home pages. When a file is accessed
as / dir1/dir2/somnet hing. pi cgroup, the send-i mages function checks if
the file is being accessed by a Mbzi | | a/ 1. 1 browser. If not, it sends a short
error message. The file sonet hi ng. pi cgr oup contains a list of lines, each of
which specifies a filename followed by a content-type (for example, one. gi f
i mage/ gi f).

To load the shared object containing your function, add the following line at
the beginning of the obj . conf file;

Init fn=l oad-nodul es shlib=yourlibrary funcs=send-i mages

Also, add the following line to the ni ne. t ypes file:
t ype=magnus-i nt er nal / pi cgroup exts=pi cgroup
To execute the custom SAF during the request-response process for some

object, add the following line to that object in the obj . conf file (send-i nages
takes an optional parameter, del ay, which is not used for this example):

Servi ce net hod=(GET| HEAD) type=nagnus-i nternal/pi cgroup fn=send-i mages

The source code is in servi ce. ¢ in the nsapi / exanpl es/ or pl ugi ns/
nsapi / exanpl es subdirectory within the server root directory.

AddLog Example

The example in this section demonstrates how to implement bri ef - | og, a
custom SAF for logging only three items of information about a request: the IP
address, the method, and the URI (for example, 198. 93. 95. 99 GET /

j ocel yn/ dogs/ honmesneeded. ht nl).

204 NSAPI Programmer’s Guide

AddLog Example

Installing the Example

To load the shared object containing your functions add the following line in
the I ni t section of the obj . conf file:
Init fn=l oad-nodul es shlib=yourlibrary funcs=brief-init,brief-1og

To call bri ef -i nit to open the log file, add the following line to the I ni t
section in obj . conf. (This line must come after the one that loads the library
containing brief-init).

Init fn=brief-init file=/tnp/brief.log

To execute your custom SAF during the AddLog stage for some object, add the
following line to that object in the obj . conf file:

AddLog fn=brief-Iog

Source Code

The source code is in addl og. ¢ is in the nsapi / exanpl es/ or pl ugi ns/
nsapi / exanpl es subdirectory within the server root directory.

#i ncl ude nsapi.h

#i ncl ude "base/ daenon. h" /* daenon_atrestart */
#i ncl ude "base/file.h" /* system fopenWA, systemfclose */
#i ncl ude "base/util.h" /[* sprintf */

/* File descriptor to be shared between the processes */
static SYS_FILE | ogfd = SYS_ERROR_FD;

#i fdef __cplusplus

extern "C'
#endi f

/* brief _terminate closes the log file when the server is restarted */
NSAPI _PUBLI C voi d brief_term nate(void *paraneter)
{
system fcl ose(l ogfd);
| ogfd = SYS_ERROR _FD;
}

/* brief-init opens the log file when the server is initialized */
NSAPI _PUBLIC int brief_init(pblock *pb, Session *sn, Request *rq)
{

/* Get the file parameter fromthe directive in obj.conf that

* invokes this function

*/

Chapter 6, Examples of Custom SAFs 205

AddLog Example

char *fn = pblock_findval ("file", pb);

/* 1f no file name is given, abort the process */

if(tfn) {
pbl ock_nvinsert("error", "brief-init: needs a file nane", pb);
return REQ ABORTED;

}

/* Open the log file */
| ogfd = system fopenWA(fn);

/* 1If a sys error occurs, abort the process */

i f(logfd == SYS_ERROR FD) {
pbl ock_nvinsert("error", "brief-init: needs a file nane", pb);
return REQ ABORTED;

}

/* Close log file when server is restarted *
daenon_atrestart(brief _term nate, NULL);

return REQ_PROCEED;

NSAPI _PUBLI C int brief_l og(pbl ock *pb, Session *sn, Request *rq)
{

/* No need to get paraneters fromthe directive in obj.conf */

/* Get the method, uri, and ip fromthe request object */
char *met hod = pbl ock_findval ("nethod", rqg->reqgpb);

char *uri = pblock_findval ("uri", rqg->regpb);

char *ip = pblock_findval ("ip", sn->client);

/* Create the | og nessage string */
char *1 ognsg;
int |len;

/* Put the ip, nethod, and uri in the |og nessage */
| ognsg = (char *) MALLOC(strlen(ip) + 1 + strlen(method) + 1 +
strlen(uri) + 1 + 1);

len = util_sprintf(lognmsg, "% % %\n", ip, nethod, uri);

/* Wite the log nmessage to the log file.

* The atom c version uses |locking to prevent interference
*/

systemfwite_atom c(logfd, |ognsg, |en);

/* free the | og message string */
FREE(| ognsg) ;

/* Log entry has been successfully witten so proceed */
return REQ PROCEED;

206 NSAPI Programmer’s Guide

Appendix

Data Structure Reference

NSAPI uses many data structures which are defined in the nsapi . h header file,
which is in the directory server - root/incl ude in Enterprise 3.x and in
server-root/plugins/include in iPlanet Web Server 4.x.

The NSAPI functions described in Chapter 5, “NSAPI Function Reference,”
provide access to most of the data structures and data fields. Before directly
accessing a data structure in naspi . h, check if an accessor function exists for
it.

For information about the privatization of some data structures in iPlanet Web
Server 4.x, see “Privatization of Some Data Structures” on page 208.

The rest of this chapter describes some of the frequently used public data
structures in nsapi . h for your convenience. Note that only the most
commonly used fields are documented here for each data structure; for
complete details look in nsapi . h.

e session
« pblock
e pb_entry

e pb_param
* Session->client

* request

e stat

e shmem_s
» cinfo

Appendix A, Data Structure Reference 207

Privatization of Some Data Structures

Privatization of Some Data Structures

session

In iPlanet Web Server 4.x, some data structures have been moved from

nsapi . h to nsapi _pvt. h. The data structures in nsapi _pvt. h are now
considered to be private data structures, and you should not write code that
accesses them directly. Instead, use accessor functions. We expect that very few
people have written plugins that access these data structures directly, so this
change should have very little impact on existing customer-defined plugins.
Look in nsapi _pvt. h to see which data structures have been removed from
the public domain and to see the accessor functions you can use to access them
from now on.

Plugins written for Enterprise Server 3.x that access contents of data structures
defined in nsapi _pvt . h will not be source compatible with In iPlanet Web
Server 4.x, that is, it will be necessary to #i ncl ude "nsapi _pvt. h" in order to
build such plugins from source. There is also a small chance that these
programs will not be binary compatible with In iPlanet Web Server 4.x, because
some of the data structures in nsapi _pvt . h have changed size. In particular,
the di recti ve structure is larger, which means that a plugin that indexes
through the directives in a dt abl e will not work without being rebuilt (with
nsapi _pvt. h included).

We hope that the majority of plugins do not reference the internals of data
structures in nsapi _pvt . h, and therefore that most existing NSAPI plugins will
be both binary and source compatible with iPlanet Web Server 4.x.

A session is the time between the opening and closing of the connection
between the client and the server. The Sessi on data structure holds variables
that apply session wide, regardless of the requests being sent, as shown here:

typedef struct {
/* Informati on about the renote client */
pbl ock *client

/* The socket descriptor to the renote client */
SYS_NETFD csd;

/* The input buffer for that socket descriptor */

208 NSAPI Programmer’s Guide

pblock

pb_entry

pblock

net buf *i nbuf;

/* Raw socket information about the remote */
/* client (for internal use) */
struct in_addr iaddr;

} Session;

The parameter block is the hash table that holds pb_ent ry structures. Its
contents are transparent to most code. This data structure is frequently used in
NSAPI; it provides the basic mechanism for packaging up parameters and
values. There are many functions for creating and managing parameter blocks,
and for extracting, adding, and deleting entries. See the functions whose names
start with pbl ock_ in Chapter 5, “NSAPI Function Reference.” You should not
need to write code that access pbl ock data fields directly.

typedef struct {

int hsize;

struct pb_entry **ht;
} pbl ock;

The pb_ent ry is a single element in the parameter block.

struct pb_entry {
pb_par am *par am
struct pb_entry *next;

pb_param

The pb_par amrepresents a name-value pair, as stored in a pb_entry.

typedef struct {
char *nane, *val ue;
} pb_param

Appendix A, Data Structure Reference 209

Session->client

Session->client

The Sessi on->cl i ent parameter block structure contains two entries:
= Theip entry is the IP address of the client machine.

= The dns entry is the DNS name of the remote machine. This member must
be accessed through the sessi on_dns function call:

/*

* session_dns returns the DNS host nane of the client for this

* session and inserts it into the client pblock. Returns NULL if

* unavai | abl e.
*/

char *session_dns(Session *sn);

request

Under HTTP protocol, there is only one request per session. The Request
structure contains the variables that apply to the request in that session (for
example, the variables include the client's HTTP headers).

typedef struct {
/* Server working variables */
pbl ock *vars;

/* The nmethod, URI, and protocol revision of this request */
bl ock *reqpb;

/* Protocol specific headers */
int | oadhdrs;
pbl ock *headers;

[* Server's response headers */
pblock *srvhdrs;

/* The object set constructed to fulfill this request */
httpd_objset *os;

/* The stat last returned by request_stat_path */
char *statpath;
struct stat *finfo;

210 NSAPI Programmer’s Guide

stat

} Request;

stat

When a program calls the st at () function for a given file, the system returns
a structure that provides information about the file. The specific details of the
structure should be obtained from your platform’s implementation, but the
basic outline of the structure is as follows:

struct stat {

dev_t st _dev; /* device of inode */
i not _t st _ino; /* inode nunber */
short st _node; /* mode bits */

short st _nlink; /* nunber of links to file /*
short st_uid; /* owner’s user id */

short st_gid; [* owner’s group id */

dev_t st_rdev; /* for special files */

off_t st_size; /* file size in characters */

time_t st_atime; /* time last accessed */

time_t st_mtime; /* time last modified */

time_t st_ctime; /* time inode last changed*/

}

The elements that are most significant for server plug-in API activities are
st _size,st_atinme,st_ntine,and st_ctine.

shmem_s
typedef struct {
void *data; [* the data */
HANDLE fdmap;
int size; /* the maximum length of the data */
char *name; [* internal use: filename to unlink if exposed */
SYS_FILE fd; /* internal use: file descriptor for region */
} shmem_s;
cinfo

The ci nf o data structure records the content information for a file.

Appendix A, Data Structure Reference 211

cinfo

typedef struct {

char

char

char

} cinfo;

212 NSAPI Programmer’s Guide

*type;
/* Identifies what kind of data is in the file*/
*encodi ng;
/* encoding identifies any conpression or other /*
/* content-independent transformation that's been /*
/* applied to the file, such as uuencode)*/
*language;
/* Identifies the language a text document is in. */

Appendix

Variables in magnus.conf

When the iPlanet Web Server starts up, it looks in a file called magnus. conf in
the server-i dl confi g directory to establish a set of global variable settings
that affect the server’s behavior and configuration.

Each directive in magnus.conf specifies a variable and a value, for example:

Server| D https-boots. ncom com
Server Nane boots. ntcom com
Address 123.45.67. 89

The order of the directives is not important.

This appendix lists the global settings that can be specified in magnus. conf in
Enterprise Server 3.x and iPlanet Web Server 4.x.

The categories are:

< Server Information

= Obiject Configuration File

= Language Issues

< DNS Lookup

= Threads, Processes and Connections
= Native Thread Pools

- CGI

= Error Logging and Statistic Collection
< ACL

Appendix B, Variables in magnus.conf 213

Server Information

Security
Chunked Encoding
Miscellaneous

For an alphabetical list of directives, see Appendix I, “Alphabetical List of
Directives in magnus.conf.”

Note In iPlanet Web Server 4.x, much of the functionality of the file cache is
controlled by a new configuration file called nsf c. conf . For information about
nsfc. conf, see the tuning chapter in the iPlanet Web Server Administrator’s
Guide.

Server Information

This sub-section lists the directives in magnus. conf that specify information
about the server. They are:

Address

Address
Concurrency
MtaHost

Port

ServerlD
ServerName
ServerRoot

User
VirtualServerFile

If a server has multiple IP addresses and you want it listen for requests only at
a specific IP address, set the value of this directive.

Concurrency

This directive determines the number of CPU processors that the server uses.
By default, the server uses all the CPU processors. You only need to set this
directive if you want the server to use less than the available processors.

214 NSAPI Programmer’s Guide

MtaHost

Port

Syntax

Default

Examples

ServerlD

ServerName

Server Information

Specifies the name of the SMTP mail server used by the server’s agents. This
value must be specified before reports can be sent to a mailing address.

The Port directive determines which TCP port the server listens to. There
should be only one Port directive in magnus. conf.

Unix: If you choose a port number less than 1024, the server must be started as
root.

Note: The port you choose can affect how users configure their navigators.
Users must specify the port number when accessing the server if the port
number is anything other than 80 (unsecured servers) or 443 (secured servers).

Port nunber

nunber is a whole number between 0 and 65535.
If no port is specified, the server assumes 80.
Port 80

Port 8080

Port 8000 (Unix only)

Specifies the server ID, such as htt ps- boot s. ncom com

The Ser ver Name directive tells the server what to put in the host name section
of any URLs it sends to the client. This affects URLs the server automatically
generates; it doesn't affect the URLs for directories and files stored in the server.
This name is what all clients use to access the server; they need to combine this
name with the port number if the port number is anything other than 80.

This name should be the alias name if your server uses an alias. You can't have
more than one Ser ver Nane directive in magnus. conf.

Appendix B, Variables in magnus.conf 215

Server Information

Syntax

Default

Examples

ServerRoot

User

Syntax

Example

Server Nanme host
host is a fully qualified domain hame such as nyhost . net scape. com

If Ser ver Nane isn’t in magnus. conf , the server attempts to derive a host name
through system calls. If they don't return a qualified domain name (for
example, it gets nyhost instead of nyhost . net scape. con), the server won't
start, and you’ll get a message telling you to manually set this value.

Server Name server. net scape. com
Server Name wWww. server . anyconpany. com

Server Nanme www. agency. gov

Specifies the server root. This directive is set during installation and is
commented out. Unlike other directives, the server expects this directive to start
with #. Do not change this directive. If you do, the Server Manager may not
function properly.

#Ser ver Root path

#Server Root d:/ netscape/ server4/ https-boots. ntcomcom

Windows NT: The User directive specifies the user account the server runs
with. By using a specific user account (other than LocalSystem), you can restrict
or enable system features for the server. For example, you can use a user
account that can mount files from another machine.

Unix: The User directive specifies the Unix user account for the server. If the
server is started by the superuser or root user, the server binds to the Port you
specify and then switches its user ID to the user account specified with the
User directive. This directive is ignored if the server isn't started as r oot . The
user account you specify should have read permission to the server’s root and
subdirectories. The user account should have write access to the | ogs directory
and execute permissions to any CGI programs. The user account should not
have write access to the configuration files. This ensures that in the unlikely
event that someone compromises the server, they won't be able to change
configuration files and gain broader access to your machine. Although you can
use the nobody user, it isn’t recommended.

216 NSAPI Programmer’s Guide

Syntax

Default

Examples

Object Configuration File

User nane
nane is the 8-character (or less) login name for the user account.

If there is no User directive, the server runs with the user account it was started
with.

User http
User server

User nobody

VirtualServerkFile

The value of this directive is the name of a file that specifies virtual servers.
Each line in this file contains an | P, docr oot pair.

Object Configuration File

LoadObjects

Syntax

This subsection lists the directives in magnus. conf that provide information
about the object configuration file that instructs the server how to handle
requests. These directives are:

= LoadObijects

< RootObject

The LoadObj ect s directive specifies one or more object configuration files to
use on startup, most notably obj . conf , which contains instructions that tell the
server how to handle requests from clients.

Note: Although you can have more than one object configuration file, the
Server Manager interface works on only one file and assumes that it is the file
obj . conf in the confi g directory in the server root directory. If you use the
Server Manger interface, don’t put the obj . conf file in any other directory and
don't rename it.

LoadOoj ects filenane

The filename is either the full path name or a relative path name.

Appendix B, Variables in magnus.conf 217

Language Issues

Default

Examples

RootObject

Syntax

Default

Examples

Unix: When the server starts executing, relative path names are resolved from
the directory specified with the - d command lien flag. If no - d flag was given,
the server looks in the current directory.

There is no default. Make sure that your magnus. conf loads the obj . conf
object, otherwise your server will not be able to process requests from clients.

LoadObj ect s obj . conf
Unix:

LoadOnbj ects /var/ ns-server/adni n/confi g/l ocal - objs. conf

The Root Obj ect directive tells the server which object loaded from an object
file is the server default. The default object is expected to have all the name
translation directives for the server; any server behavior that is configured in the
default object affects the entire server.

If you specify an object that doesn’t exist, the server doesn’t report an error
until a client tries to retrieve a document. The Server Manager assumes the
default to be the object named def aul t . Don’t deviate from this convention if
you use (or plan to use) the Server Manager.

Root Obj ect nane

The name is the name of an object defined in one of the object files loaded
with a LoadObj ect s directive.

There is no default; that is, if you specify RootObject, you must specify a name
with it.

Root Obj ect def aul t

Language Issues

This section lists the directives in magnus. conf related to language issues. The
directives are:

= AcceptLanguage
= AdminlLanguage

218 NSAPI Programmer’s Guide

Language Issues

= ClientLanguage
= DefaultLanguage

AcceptLanguage

This directive determines whether or not the server parses the Accept-Language
header sent by the client to indicate which languages the client accepts. If the
value is on, the server parses this header and sends an appropriate language
version based on which language the client can accept. You should set this
value to on only if the server supports multiple languages.

When this directive is set to on, the accelerator cache is disabled since it does
not use Accept Language in its cache keys.

Default The default value is of f.

AdminLanguage

For an international version of the server, this directive specifies the language
for the Server Manager. Values en (English), f r (French), de (German) or j a
(Japanese).

ClientLanguage

For an international version of the server, this directive specifies the language
client messages (such as File Not Found). Values en (English), f r (French), de
(German) or j a (Japanese).

DefaultLanguage

For an international version of the server, this directive specifies the default
language for the server. The default language is used for both the client
responses and administration. Values en (English), f r (French), de (German) or
j a (Japanese).

Appendix B, Variables in magnus.conf 219

DNS Lookup

DNS Lookup

AsyncDNS
DNS
Syntax
Default
Example

Threads,

This section lists the directives in magnus. conf that affect DNS lookup. The
directives are:

< AsyncDNS
< DNS

Specifies whether asynchronous DNS is allowed. The value is either on or of f .
If DNS is enabled, enabling asynchronous DNS improves server performance.

The DNS directive specifies whether the server performs DNS lookups on clients
that access the server. When a client connects to your server, the server knows
the client’s IP address but not its host name (for example, it knows the client as
198.95.251.30, rather than its host name www. a. com). The server will resolve
the client’s IP address into a host name for operations like access control, CGl,
error reporting, and access logging.

If your server responds to many requests per day, you might want (or need) to
stop host name resolution; doing so can reduce the load on the DNS or NIS
server.

DNS [on]| of f]
DNS host name resolution is on as a default.

DNS on

Processes and Connections

This subsection lists the directives in nagnus. conf that affect the number and
timeout of threads, processes, and connections. They are:

= BlockingListenSockets
= KeepAliveTimeout
= KernelThreads

220 NSAPI Programmer’s Guide

Threads, Processes and Connections

e ListenQ

= MaxKeepAliveConnections
= MaxProcs

= PostThreadsEarly

< RcvBufSize

= RqThrottle

= RgThrottleMinPerSocket
< SndBufSize

= StackSize

= StrictHttpHeaders

e TerminateTimeout

Also see the “Native Thread Pools” section for new directives in iPlanet Web
Server 4.x for controlling the pool of native kernel threads.

BlockingListenSockets

This directive determines whether or not the server’s sockets listen in blocking
mode. Do not use this directive with SSL.

KeepAliveTimeout

This directive determines the maximum time that the server holds open an
HTTP Keep-Alive connection or a persistent connection between the client and
the server. The Keep-Alive feature for earlier versions of the server allows the
client/server connection to stay open while the server processes the client
request. For Enterprise Server 3.0+, the default connection is a persistent
connection that remains open until the server closes it or the connection has
been open for longer than the time allowed by KeepAl i veTi meout .

KernelThreads

iPlanet Web Server can support both kernel-level and user-level threads
whenever the operating system supports kernel-level threads. Usually, the
standard debugger and compiler are intended for use with kernel-level threads.
By setting Ker nel Thr eads to on, you ensure that the server uses only kernel-
level threads, not user-level threads.

Appendix B, Variables in magnus.conf 221

Threads, Processes and Connections

ListenQ

Defines the number of incoming connections for a server socket.

MaxKeepAliveConnections

Default

MaxProcs

Specifies the maximum number of Keep-Alive and persistent connections that
the server can have open simultaneously.

200

New in iPlanet Web Server 4.0.

Specifies the maximum number of processes that the server can have running
simultaneously. If you don't include MaxPr ocs in your magnus.conf file, the
server defaults to running a single process.

There is additional discussion of this and other server configuration and
performance tuning issues in the “Configuring the Server for Performance”
chapter in the iPlanet Web Server Administrator’s Guide.

PostThreadsEarly

RcvBufSize

RgThrottle

If this directive is set to on, the server checks the whether the minimum number
of threads are available at a socket (as specified by RqThr ot t | eM nPer Socket)
after accepting a connection but before sending the response to the request.
Use this directive when the server will be handling requests that take a long
time to handle, such as those that do long database connections.

Controls the size of the receive buffer at the server’s sockets.

Specifies the maximum number of simultaneous requests that the server can
handle simultaneously per socket. Each request runs in its own thread.

222 NSAPI Programmer’s Guide

Threads, Processes and Connections

There is additional discussion of this and other server configuration and
performance tuning issues in the “Configuring the Server for Performance”
chapter in the iPlanet Web Server Administrator’s Guide.

Default 512

RgThrottleMinPerSocket

Specifies the approximate minimum number of threads that wait at each socket
for requests to come in.

SndBufSize

Controls the size of the send buffer at the server’s sockets.
StackSize

Determines the maximum stack size for each request handling thread.
StrictHttpHeaders

New in iPlanet Web Server 4.1.

Controls strict HTTP header checking. If strict HTTP header checking is on, the
server rejects connections that include inappropriately duplicated headers.

Syntax StrictHttpHeaders [on| off]

Default ~ Strict HTTP header checking is off by default.

TerminateTimeout

Specifies the time that the server waits for all existing connections to terminate
before it shuts down.

Appendix B, Variables in magnus.conf 223

Native Thread Pools

Native Thread Pools

New in iPlanet Web Server 4.0.

This section lists the directives for controlling the size of the native kernel
thread pool. These directives are all new in iPlanet Web Server 4.x. In previous
versions of the server, you could control the native thread pool by setting the
system variables NSCP_PQOOL_STACKSI ZE, NSCP_POOL_ THREADMAX, and
NSCP_POOL_ WORKQUEUEMAX.

If you have set these values as environment variables and also in magnus. conf,
the environment variable values will take precedence.

The native pool on Unix is normally not engaged, as all threads are OS-level
threads. Using native pools on Unix may introduce a small performance
overhead as they’ll require an additional context switch; however, they can be
used to localize the j vm st i ckyAt t ach effect or for other purposes, such as
resource control and management or to emulate single-threaded behavior for
plug-ins (by setting maxThr eads=1).

On Windows NT, the default native pool is always being used and iPlanet Web
Server uses fibers (user-scheduled threads) for initial request processing. Using
custom additional pools on Windows NT introduces no additional overhead.

The directives are:

« NativePoolStackSize

= NativePoolMaxThreads
= NativePoolMinThreads
< NativePoolQueueSize

NativePoolStackSize

New in iPlanet Web Server 4.0.

Determines the stack size of each thread in the native (kernel) thread pool.

224 NSAPI Programmer’s Guide

CGl

NativePoolMaxThreads

New in iPlanet Web Server 4.0.
Determines the maximum number of threads in the native (kernel) thread pool.

Default 128

NativePoolMinThreads

New in iPlanet Web Server 4.0.
Determines the minimum number of threads in the native (kernel) thread pool.

Default 1

NativePoolQueueSize

New in iPlanet Web Server 4.0.

Determines the number of threads that can wait in the queue for the thread
pool. If all threads in the pool are busy, then the next request-handling thread
that needs to use a thread in the native pool must wait in the queue. If the
queue is full, the next request-handling thread that tries to get in the queue is
rejected, with the result that it returns a busy response to the client. It is then
free to handle another incoming request instead of being tied up waiting in the
queue.

CGl

This section lists the directives in magnus. conf that affect requests for CGI
programs. The directives are:

= CGlExpirationTimeout
= CGIWaitPid (UNIX Only)

Appendix B, Variables in magnus.conf 225

Error Logging and Statistic Collection

CGlIExpirationTimeout

New in iPlanet Web Server 4.0.

This directive specifies the maximum time in seconds that CGI processes are
allowed to run before being killed.

The value of CA Expi rati onTi meout should not be set too low - 5 minutes
would be a good value for most interactive CGls; but if you have CGls that are
expected to take longer without misbehaving, then you should set it to the
maximum duration you expect a CGI program to run normally.

Note that on Windows NT platforms i ni t - cgi time-out does not work, so you
must use Cd Expi rati onTi nmeout .

CGIWaitPid (UNIX Only)

For UNIX platforms, when CA Wai t Pi d is set to on, the action for the SIGCHLD
signal is the system default action for the signal. If a NSAPI plugin fork/execs a
child process, it should call wai t pi d with its child process pi d when

Cd Wi t Pi d is enabled to avoid leaving “defunct” processes when its child
process terminates. When CG Wi t Pi d is enabled, the SHTML engine waits
explicitly on its exec cmd child processes. Note that this directive has no effect
on CGlI.

Error Logging and Statistic Collection

This section lists the directives in magnus. conf that affect error logging and the
collection of server statistics. They are:

= DaemonStats (Unix Only)
= ErrorLog

= LogVerbose

« PidLog

DaemonStats (Unix Only)

This directive specifies whether or not the server collects some daemon
statistics. The value is on or of f . If the value is of f, SNMP statistic collection
will not work.

226 NSAPI Programmer’s Guide

ErrorLog

Syntax

Default

Examples

LogVerbose

PidLog

Error Logging and Statistic Collection

The ErrorLog directive specifies the directory where the server logs its errors.
If errors are reported to a file, then the file and directory in which the log is
kept must be writable by whatever user account the server runs as.

Unix: You can also use the sysl og facility.
ErrorLog /ogfile
The logfile can be either a full path or file name.

On Unix systems, it can be the keyword SYSLOG (it must be in all capital
letters).

There is no default error log.

Windows NT:

ErrorLog C:\Netscape\ns-home\Logs\Errors
Unix:

ErrorLog /var/ns-server/logs/errors

ErrorLog SYSLOG

This directive determines whether verbose logging occurs or not. If the value is
on, the server logs all server messages including those that are not logged by
default (such as WAI initialization messages).

Pi dLog specifies a file in which to record the process ID (pid) of the base
server process. Some of the server support programs assume that this log is in
the server root, in | ogs/ pi d.

To shut down your server, kill the base server process listed in the pid log file
by using a - TERMsignal. To tell your server to reread its configuration files and
reopen its log files, use ki | I with the - HUP signal.

Appendix B, Variables in magnus.conf 227

ACL

If the Pi dLog file isn’'t writable by the user account that the server uses, the
server does not log its process ID anywhere. The server won't start if it can’t log
the process ID.

Syntax PidLog file
The file is the full path name and file name where the process ID is stored.
Default There is no default.
Examples Pi dLog /var/ ns-server/| ogs/pid

Pi dLog /tnmp/ ns-server.pid

ACL

This section lists the directives in magnus.conf relevant to access control lists
(ACLs).

= ACLFile

ACLFile

The ACLFi | e directive specifies an ACL (Access Control List) definition file—a
text file that normally resides in the ht t pacl directory. Multiple ACLFi | e
directives can appear in the magnus. conf file. The server reads all the ACL
definitions in all the specified ACL definition files when it starts up. Each ACL
file must have a unique name.

Usually the value of ACLFi | e is gener at ed. ht t ps- Ser ver nane. acl , and it
resides in the htt pacl directory of the server installation directory.

Syntax ACLFi |l e nane
The name is the name of an ACL definition file.

Example ACLFile d:/netscape/server4/httpacl/generated. https-
boot s. ntom com acl

228 NSAPI Programmer’s Guide

Security

Security

This section lists the directives in magnus. conf that affect server access and
security issues for iPlanet Web Server. They are:

= Chroot (Unix only)
= Ciphers

= Security

< ServerCert

= ServerKey

« SSLCacheEntries

= SSLClientAuth

e SSLSessionTimeout
e SSL2

e SSL3

« SSL3Ciphers

= SSL3SessionTimeout

Chroot (Unix only)

IMPORTANT

The Chr oot directive lets the Unix system administrator place the server under
a constraint such that it has access only to files in a given directory, termed the
“Chroot directory”. This is useful if the server’s security is ever compromised.
For example, if an intruder somehow obtains shell access on the server
machine, the intruder could only affect a very limited set of files on the server
machine.

The server must be started as the super user to use the Chr oot directive. CGlI
programs must be linked statically, and any binaries (per! or /bi n/ sh) must
be copied to the Chroot directory.

The user public information directory feature isn't available unless a copy of /
et c/ passwd is kept in the Chroot directory and all of the users home
directories are exactly mirrored within the Chroot directory.

A server using Chr oot can't be restarted with the - HUP signal.
Logs and server configuration files should be kept outside the Chroot directory.

All paths in magnus. conf must be absolute; paths in obj . conf must be
relative to the Chroot directory.

Appendix B, Variables in magnus.conf 229

Security

Syntax

Default

Examples

Ciphers

Syntax

Security

Syntax
Default

Example

ServerCert

Syntax

Chroot directory

The directory is the full path name to the directory used as the server’s root
directory.

There is no default. You must specify a directory.

Chroot /d/ns-httpd

Chr oot / wwwy

The Ci phers directive specifies the ciphers enabled for your server.
Ci phers +rc4 +rcdexport -rc2 -rc2export +idea +des +desede3
A + means the cipher is active, and a - means the cipher is inactive.

Valid ciphers are rc4, rc4export, rc2, rc2export, i dea, des, desede3. Any
cipher with export as port of its name is not stronger than 40 bits.

The Security directive tells the server whether encryption (Secure Sockets
Layer version 2 or version 3 or both) is enabled or disabled.

If Security is setto on, and both SSL2 and SSL3 are enabled, then the server
tries SSL3 encryption first. If that fails, the server tries SSL2 encryption.

Security [on]|off]
By default, security is off.

Security off

The Server Cert directive specifies where the certificate file is located.
ServerCert certfile

The certfile is the server’s certificate file, specified as a relative path from the
server root or as an absolute path.

230 NSAPI Programmer’s Guide

Security

ServerKey
The Ser ver Key directive tells the server where the key file is located.
Syntax ServerKey keyfile
The keyfile is the server’s key file, specified as a relative path from the server
root or as an absolute path.
SSLCacheEntries
Specifies the number of SSL sessions that can be cached. There is no upper
limit.
Syntax SSLCacheEntries nunber
If the number is 0, the default value, which is 10000, is used.
SSLClientAuth
The SSLd i ent Aut h directive causes SSL3 client authentication on all requests.
Syntax SSL3Cli ent Auth on| of f

on directs that SSL3 client authentication be performed on every request,
independent of ACL-based access control.

SSLSessionTimeout

Syntax

The SSLSessi onTi meout directive controls SSL2 session caching.

SSLSessi onTi neout seconds

The seconds value is the number of seconds until a cached SSL2 session
becomes invalid. The default value is 100. If the SSLSessi onTi neout directive

is specified, the value of seconds is silently constrained to be between 5 and
100 seconds.

Appendix B, Variables in magnus.conf 231

Security

SSL2

Syntax
Default

Example

SSL3

Syntax
Default

Example

SSL3Ciphers

Syntax

The SSL2 directive tells the server whether Secure Sockets Layer, version 2
encryption is enabled or disabled. The Securi ty directive dominates the SSL2
directive; if SSL2 encryption is enabled but the Securi t y directive is set to of f,
then it is as though SSL2 were disabled.

SSL2 [on| of f]
By default, security is off.

SSL2 of f

The SSL3 directive tells the server whether Secure Sockets Layer, version 3
security is enabled or disabled. The Securi ty directive dominates the SSL3
directive; if SSL3 security is enabled but the Securi ty directive is set to of f,
then it is as though SSL3 were disabled.

SSL3 [on| of f]
By default, security is off.

SSL3 of f

The SSL3Ci phers directive specifies the SSL3 ciphers enabled for your server.
SSL3Ci phers +rc4 +rcdexport -rc2 -rc2export +idea +des +desede3
A + means the cipher is active, and a - means the cipher is inactive.

Valid ciphers are rsa_rc4_128_nd5, rsa3des_sha, rsa_des_sha,
rsa_rc4_40_nd5, rsa_rc2_40_md5, and rsa_nul | _nd5. Any cipher with 40
as part of its name is 40 bits.

SSL3SessionTimeout

Syntax

The SSL3Sessi onTi meout directive controls SSL3 session caching.

SSL3Sessi onTi neout seconds

232 NSAPI Programmer’s Guide

Chunked

Chunked Encoding

The seconds value is the number of seconds until a cached SSL3 session
becomes invalid. The default value is 86400 (24 hours). If the

SSL3Sessi onTi meout directive is specified, the value of seconds is silently
constrained to be between 5 and 86400 seconds.

Encoding

This section lists directives that control chunked encoding. For more
information, see “Buffered Streams.”

UseOutputStreamSize
flushTimer
ChunkedRequestBufferSize
ChunkedRequestTimeout

UseOutputStreamSize

Syntax

flushTimer

Syntax

New in iPlanet Web Server 4.1.

The UseQut put St reansi ze directive determines the default output stream
buffer size for the net _read and net buf _grab NSAPI functions.

UseQut put StreanSSi ze size

The size value is the number of bytes. The default value is 8192.

New in iPlanet Web Server 4.1.

If the interval between subsequent write operations is greater than the

f1 ushTi mer value for an application, further buffering is disabled. This is
necessary for status monitoring CGI applications that run continuously and
generate periodic status update reports.

flushTimer m/liseconds

The milliseconds value is the maximum number of milliseconds between write
operations in which buffering is enabled. The default value is 3000 (3 seconds).

Appendix B, Variables in magnus.conf 233

Miscellaneous

ChunkedRequestBufferSize

Syntax

New in iPlanet Web Server 4.1.

The ChunkedRequest Buf f er Si ze directive determines the default buffer size
for “un-chunking” request data.

ChunkedRequest Buf fer Si ze size

The size value is the number of bytes. The default value is 8192.

ChunkedRequestTimeout

New in iPlanet Web Server 4.1.

The ChunkedRequest Ti meout directive determines the default timeout for
“un-chunking” request data.

Syntax ChunkedRequest Ti neout seconds
The seconds value is the number of seconds. The default value is 60 (1 minute).
Miscellaneous

This section lists miscellaneous other directives in magnus. conf .
= Umask (UNIX only)

Umask (UNIX only)

This directive specifies the umask value used by the NSAPI functions
Syst em f openWA() and Syst em f openRW) to open files in different modes.
Valid values for this directive are standard UNIX umask values.

For more information on these functions, see syst em f openWA and
syst em f openRWin Chapter 5, “NSAPI Function Reference.”

234 NSAPI Programmer’s Guide

Appendix

MIME Types

This appendix discusses the MIME types file. The sections are:
= Introduction

= Loading the MIME Types File

« Determining the MIME Type

< How the Type Affects the Response

= What Does the Client Do with the MIME Type?

= Syntax of the MIME Types File

= Sample MIME Types File

Introduction

The MIME types file in the confi g directory contains mappings between
MIME (Multipurpose Internet Mail Extensions) types and file extensions. For
example, the MIME types file maps the extensions . ht M and . ht mextension
to the type text/ ht i :

type=text/htm exts=htm html

When the iPlanet Web Server receives a request for a resource from a client, it
uses the MIME type mappings to determine what kind of resource is being
requested.

Appendix C, MIME Types 235

Loading the MIME Types File

MIME types can have three attributes: language (I ang), encoding (enc), and
content-type (t ype). The most commonly used attribute is t ype. The server
frequently considers the t ype when deciding how to generate the response to
the client. (The enc and | ang attributes are rarely used).

By default, the MIME types file is called ni ne. t ypes. You should not change
the name of this file unless you have a particular reason for doing so --
everyone expects it to be called ni ne. t ypes.

Loading the MIME Types File

When the server is initialized, an I ni t directive in obj . conf invokes the
| oad- mi nme-t ypes directive to load the MIME types file:

Init fn="1oad-types" m me-types="m nme.types"

After loading the MIME types file, the server uses it to create a table of
mappings between file extensions and MIME types.

If you make changes to the MIME types file, you will need to restart the server
before the changes take effect. The server loads the MIME types file during the
initialization step, so it does not notice any changes in the MIME types file until
the next time it is initialized.

Determining the MIME Type

During the Qbj ect Type step in the request handling process, the server
determines the MIME type attributes of the resource requested by the client.
Several different server application functions (SAFs) can be used to determine
the MIME type, but the most commonly used one is t ype- by- ext ensi on. This
function tells the server to look up the MIME type according to the requested
resource’s file extension in the MIME types table.

The directive in obj . conf that tells the server to look up the MIME type
according to the extension is:

bj ect Type fn=type-by-extension

If the server uses a different SAF, such as f or ce- t ype, to determine the t ype,
then the MIME types table is not used for that particular request.

236 NSAPI Programmer’s Guide

How the Type Affects the Response

For more details of the ObjectType step, see Chapter 2, “Syntax and Use of
obj.conf.”

How the Type Affects the Response

The server considers the value of the t ype attribute when deciding which
Servi ce directive in obj . conf to use to generate the response to the client.

By default, if the t ype does not start with magnus-i nt er nal /, the server just
sends the requested file to the client. The directive in obj . conf that contains
this instruction is:

Servi ce met hod=(GET| HEAD| POST) type=*~magnus-internal /* fn=send-file

Note here the use of the special characters *~ to mean “does not match.” See
Appendix D, “Wildcard Patterns,” for details of special characters.

By convention, all values of t ype that require the server to do something other
than just send the requested resource to the client start with nagnus-
internal/.

For example, if the requested resource’s file extension is . map, the type is
mapped to magnus- i nt er nal / i magemap. If the extension is . cgi, . exe, or
. bat, the type is set to nagnus-i nternal / cgi :

type=magnus-i nt ernal / i nagemap ext s=map
t ype=nagnus-i nt ernal / cgi ext s=cgi , exe, bat

If the t ype starts with magnus-i nt er nal / , the server executes whichever
Ser vi ce directive in obj . conf matches the specified type. For example, if the
type is magnus- i nt er nal / i magemap, the server uses the i magemap function to
generate the response to the client, as indicated by the following directive:

Servi ce met hod=(GET| HEAD) type=magnus-i nternal /i magemap f n=i magemap

If the type is magnus-i nternal / servl et, the server uses the
NSSer vl et Ser vi ce function to generate the response to the client, as indicated
by the following directive:

Service type="magnus-internal/servlet" fn="NSServl et Service"

Appendix C, MIME Types 237

What Does the Client Do with the MIME Type?

What Does the Client Do with the MIME
Type?

The Ser vi ce function generates the data and sends it to the client that made
the request. When the server sends the data to the client, it also sends headers.
These headers include whichever MIME type attributes are known (which is
usually t ype).

When the client receives the data, it uses the MIME type to decide what to do
with the data. For browser clients, the usual thing is to display the data in the
browser window.

If the requested resource cannot be displayed in a browser but needs to be
handled by another application, its t ype starts with appl i cation/, for
example appl i cati on/ oct et - st ream(for . bi n file extensions) or

appl i cati on/ x- maker (for .fmfile extensions). The client has its own set of
user-editable mappings that tells it which application to use to handle which
types of data.

For example, if the type is appl i cat i on/ x- maker, the client usually handles it
by opening Adobe FrameMaker to display the file.

Syntax of the MIME Types File

The first line in the MIME types file identifies the file format and must read:

#- - Net scape Communi cations Corporation M ME | nformation

Other non-comment lines have the following format:

type=type/ subtype exts=[fil e extensions] icon=icon
= type/subtype isthe type and subtype.
= exts are the file extensions associated with this type.

= icon is the name of the icon the browser displays. Netscape Navigator
keeps these images internally. If you use a browser that doesn’t have these
icons, the server delivers them.

238 NSAPI Programmer’s Guide

Sample MIME Types File

Sample MIME Types File

Here is an example of a MIME types file:

#- - Net scape Communi cations Corporation M ME | nformation
Do not delete the above line. It

type=applicati on/octet-stream
type=appl i cati on/ oda
type=appl i cati on/ pdf
type=appl i cati on/ postscri pt
type=application/rtf
type=application/x-mf
type=appl i cation/ x-gtar

t ype=appl i cati on/ x- shar
type=application/x-tar
type=appl i cati on/ mac- bi nhex40

t ype=audi o/ basi c
t ype=audi o/ x- ai f f
t ype=audi o/ x- wav

type=i mage/ gi f

type=i mage/ i ef

t ype=i mage/ j peg

type=i mage/tiff

t ype=i mage/ x-rgb

t ype=i mage/ x- xbi t map

t ype=i mage/ x- xpi xmap

t ype=i mage/ x- xwi ndowdunp

type=text/htmn

type=text/plain
type=text/richtext

type=t ext/t ab- separ at ed- val ues
t ype=t ext/ x- set ext

t ype=vi deo/ npeg
t ype=vi deo/ qui ckti me
t ype=vi deo/ x- msvi deo

enc=x-gzi p exts=gz
enc=x- conpress exts=z
enc=x- uuencode exts=uu, uue

t ype=magnus-i nt ernal / i nagemap

is used to identify the file type
ext s=bi n, exe
ext s=oda

ext s=pdf

ext s=ai, eps, ps
exts=rtf
exts=mf,fm
ext s=gt ar

ext s=shar

ext s=tar

ext s=hgx

ext s=au, snd
exts=aif,aiff,aifc
ext s=wav

exts=qgi f

ext s=i ef
exts=j peg, j pg, j pe
exts=tiff, tif

ext s=rgh

ext s=xbm

ext s=xpm

ext s=xwd

ext s=ht m ht m
ext s=t xt
exts=rtx
ext s=t sv
ext s=et x

ext s=npeg, npg, npe
ext s=qt, nov
ext s=avi

ext s=map

type=magnus-i nternal / parsed- htm exts=shtm

t ype=nmagnus-internal /cg
type=nmagnus-internal/jsp

ext s=cgi , exe, bat
ext s=j sp

Appendix C, MIME Types 239

Sample MIME Types File

240 NSAPI Programmer’s Guide

Appendix

Wildcard Patterns

This appendix describes the format of wildcard patterns used by the iPlanet
Web Server.

These wildcards are used in:

= directives in the configuration file obj . conf (see Chapter 2, “Syntax and
Use of obj.conf”)

= various built-in SAFs (see Chapter 3, “Predefined SAFs and the Request
Handling Process”)

= some NSAPI functions (see Chapter 5, “NSAPI Function Reference”)

Wildcard patterns use special characters. If you want to use one of these
characters without the special meaning, precede it with a backslash (\)
character.

Wildcard Patterns

Table 6.1 Wildcard patterns

Pattern Use
* Match zero or more characters.
? Match exactly one occurrence of any character.

Appendix D, Wildcard Patterns 241

Wildcard Examples

Table 6.1 Wildcard patterns

Pattern Use

| An or expression. The substrings used with this operator
can contain other special characters such as * or $. The
substrings must be enclosed in parentheses, for example,
(a]b]c), but the parentheses cannot be nested.

$ Match the end of the string. This is useful in or
expressions.

[abc] Match one occurrence of the characters a, b, or c. Within
these expressions, the only character that needs to be
treated as a special character is]; all others are not

special.
[a-Z] Match one occurrence of a character between a and z.
Naz Match any character except a or z.
y p
¥~ This expression, followed by another expression,

removes any pattern matching the second expression.

Wildcard Examples

Table 6.2 Wildcard examples

Pattern Result

* netscape.com Matches any string ending with the characters
. net scape. com

(quark] energy).netscape Matches either quar k. net scape. comor

.com ener gy. net scape. com

198.93.9[23].77 Matches a numeric string starting with either
198. 93. 92 or 198. 93. 93 and ending with any 3
characters.

* Matches any string with a period in it.

242 NSAPI Programmer’s Guide

Wildcard Examples

Table 6.2 Wildcard examples

Pattern

Result

~netscape-

* netscape.com~quark.ne
tscape.com

* netscape.com~(quark|
energy | neutrino).netsca
pe.com

.com~.netscape.com

type=*~magnus-internal/
*

Matches any string except those starting with
net scape-.

Matches any host from domain net scape. comexcept
for a single host quar k. net scape. com

Matches any host from domain .net scape. comexcept
for hosts quar k. net scape. com

ener gy. net scape. com and

neut ri no. net scape. com

Matches any host from domain . comexcept for hosts
from subdomain net scape. com

Matches any type that does not start with magnus-
internal/.

This wildcard pattern is used in the file obj . conf in the
catch-all Ser vi ce directive.

Appendix D, Wildcard Patterns 243

Wildcard Examples

244 NSAPI Programmer’s Guide

Appendix

Time Formats

This appendix describes the format strings used for dates and times. These
formats are used by the NSAPI function uti | _strfti nme, by some built-in SAFs
such as append-trail er, and by server-parsed HTML (par se- ht m).

The formats are similar to those used by the strftime C library routine, but
not identical.

Table 6.3 Time formats

Symbol Meaning

%a Abbreviated weekday name (3 chars)

%d Day of month as decimal number (01-31)
%S Second as decimal number (00-59)

%M Minute as decimal number (00-59)

%H Hour in 24-hour format (00-23)

%Y Year with century, as decimal number, up to 2099
%b Abbreviated month name (3 chars)

%h Abbreviated month name (3 chars)

%T Time "HH:MM:SS"

%X Time "HH:MM:SS"

Appendix E, Time Formats 245

Table 6.3 Time formats

Symbol

Meaning

%A
%B
%C
%c

%D

%e

%I
%j
%k
%l
%m
%n
%p
%R
Y%r
%t
%U

%w

%W

%X
%y
%%

Full weekday name

Full month name

"%a %b %e %H:%M:%S %Y"

Date & time "%m/%d/%y %H:%M:%S"
Date "%m/%d/%y"

Day of month as decimal number (1-31) without leading
zeros

Hour in 12-hour format (01-12)

Day of year as decimal number (001-366)

Hour in 24-hour format (0-23) without leading zeros
Hour in 12-hour format (1-12) without leading zeros
Month as decimal number (01-12)

line feed

A.M./P.M. indicator for 12-hour clock

Time "%H:%M"

Time "%I1:%M:%S %p"

tab

Week of year as decimal number, with Sunday as first
day of week (00-51)

Weekday as decimal number (0-6; Sunday is 0)

Week of year as decimal number, with Monday as first
day of week (00-51)

Date "%m/%d/%y"
Year without century, as decimal number (00-99)

Percent sign

246 NSAPI Programmer’s Guide

Appendix

Server-Parsed HTML Tags

HTML files can contain tags that are executed on the server. This appendix
discusses the standard server-side tags you can include in HTML files.

For information about defining your own server-side tags in iPlanet Web Server
4.x, see the Programmer’s Guide for iPlanet Web Server.

Note: The server parses server-side tags only if server-side parsing has been
activated. Use the “Parse HTML” page in the Content Management tab of the
Server Manager interface to enable or disable the parsing of server-side tags.

When you activate parsing, you need to be sure that the following directives
are added to your obj . conf file (Note that native threads are turned off.):

Init funcs="shtm _init,shtm _send" shlib="install_dirl/bin/https/bin/
Shtm.dl " NativeThreads="no" fn="I|oad-nmodul es"

Init Latelnit = "yes" fn="shtm _init"

Using Server-Parsed Commands

This section describes the HTML commands for including server-parsed tags in
HTML files. These commands are embedded into HTML files which are
processed by the built-in SAF parse-htni .

Appendix F, Server-Parsed HTML Tags 247

Using Server-Parsed Commands

The server replaces each command with data determined by the command and
its attributes.

The format for a command is:

<!--#command attributel attribute2 ... -->

The format for each at t ri but e is a name-value pair such as:

nanme="val ue"
Commands and attribute names should be in lower case.

As you can see, the commands are “hidden” within HTML comments so they
are ignored if not parsed by the server. Following are details of each command
and its attributes.

« config

e include

* echo

o fsize

» flastmod

e exec

config

The config command initializes the format for other commands.

= The errnsg attribute defines a message sent to the client when an error
occurs while parsing the file. This error is also logged in the error log file.

e Thetinefnt attribute determines the format of the date for the f I ast nod
command. It uses the same format characters as the util _strftime()
function. Refer to Appendix E, “Time Formats,” for details about time
formats. The default time format is: " %A, %l- %- % %@ .

e The si zef nt attribute determines the format of the file size for the f si ze
command. It may have one of these values:

= byt es to report file size as a whole number in the format 12,345,678.
= abbrev (the default) to report file size as a number of KB or MB.

Example:

248 NSAPI Programmer’s Guide

Using Server-Parsed Commands

<I--#config timefm="% % % %, %" sizefnt="abbrev"-->

This sets the date format like 08:23:15 AM Wed Apr 15, 1996, and the file size
format to the number of KB or MB of characters used by the file.

iInclude

The i ncl ude command inserts a file into the parsed file (it can’'t be a CGI
program). You can nest files by including another parsed file, which then
includes another file, and so on. The user requesting the parsed document must
also have access to the included file if your server uses access control for the
directories where they reside.

e The virtual attribute is the URI of a file on the server.

= Thefil e attribute is a relative path name from the current directory. It may
not contain elements such as . ./ and it may not be an absolute path.

Example:

<l--#include file="bottle.gif"-->

echo

The echo command inserts the value of an environment variable. The var
attribute specifies the environment variable to insert. If the variable is not
found, (none) is inserted. See below for additional environment variables.

Example:
<!--#echo var="DATE_GMJI"-- >

fsize

The f si ze command sends the size of a file. The attributes are the same as
those for the i ncl ude command (vi rtual and fil e). The file size format is
determined by the si zef nt attribute in the confi g command.

Example:

Appendix F, Server-Parsed HTML Tags 249

Using Server-Parsed Commands

<I--#fsize file="bottle.gif"-->

flastmod

The 1 ast mod command prints the date a file was last modified. The attributes
are the same as those for the i ncl ude command (virtual and file). The
date format is determined by the ti mef nt attribute in the confi g command.

Example:

<I--#flastnod file="bottle.gif"-->

exec

The exec command runs a shell command or CGI program.

= The cnd attribute (Unix only) runs a command using / bi n/ sh. You may
include any special environment variables in the command.

= The cgi attribute runs a CGI program and includes its output in the parsed

file.
Example:
<!--#exec cgi ="workit.pl"-->

Environment Variables in Commands

In addition to the normal set of environment variables used in CGI, you may
include the following variables in your parsed commands:

= DOCUMENT_NAME

is the file name of the parsed file.
= DOCUMENT_URI

is the virtual path to the parsed file (for example, / sht m /test . shtnl).
= QUERY_STRING_UNESCAPED

is the unescaped version of any search query the client sent with all shell-
special characters escaped with the \ character.

= DATE_LOCAL

250 NSAPI Programmer’s Guide

Using Server-Parsed Commands

is the current date and local time.
DATE_GMT

is the current date and time expressed in Greenwich Mean Time.
LAST_MODIFIED

is the date the file was last modified.

Appendix F, Server-Parsed HTML Tags 251

Using Server-Parsed Commands

252 NSAPI Programmer’s Guide

Appendix

HyperText Transfer Protocol

The HyperText Transfer Protocol (HTTP) is a protocol (a set of rules that
describes how information is exchanged) that allows a client (such as a web
browser) and a web server to communicate with each other.

HTTP is based on a request/response model. The browser opens a connection
to the server and sends a request to the server.

The server processes the request and generates a response which it sends to
the browser. The server then closes the connection.

This appendix provides a short introduction to a few HTTP basics. For more
information on HTTP, see the IETF home page at:

http://ww.ietf.org/ home. htm

This appendix has the following sections:
= Compliance

= Requests

= Responses

= Buffered Streams

Appendix G, HyperText Transfer Protocol 253

Compliance

Compliance

Requests

Netscape Enterprise Server 3.x and iPlanet Web Server 4.x support HTTP 1.1.
Previous versions of the server supported HTTP 1.0. The server is conditionally
compliant with the HTTP 1.1 proposed standard, as approved by the Internet
Engineering Steering Group (IESG) and the Internet Engineering Task Force
(IETF) HTTP working group. For more information on the criteria for being
conditionally compliant, see the Hypertext Transfer Protocol—HTTP/1.1
specification (RFC 2068) at:

http://ww.ietf.org/htm.charters/http-charter.htni

A request from a browser to a server includes the following information:
= Request Method, URI, and Protocol Version
= Request Headers

= Request Data

Request Method, URI, and Protocol
Version

A browser can request information using a number of methods. The commonly
used methods include the following:

= GET—Requests the specified resource (such as a document or image)
= HEAD—Requests only the header information for the document

= POST—Requests that the server accept some data from the browser, such as
form input for a CGI program

= PUT—Replaces the contents of a server's document with data from the
browser

254 NSAPI Programmer’s Guide

Responses

Request Headers

The browser can send headers to the server. Most are optional. Some
commonly used request headers are shown in Table 6.4.

Table 6.4 Common request headers

Request header Description

Accept The file types the browser can accept.

Aut hori zati on Used if the browser wants to authenticate itself with a
server; information such as the username and password
are included.

User - agent The name and version of the browser software.

Ref er er The URL of the document where the user clicked on the
link.

Host The Internet host and port number of the resource being
requested.

Request Data

If the browser has made a POST or PUT request, it sends data after the blank
line following the request headers. If the browser sends a GET or HEAD request,
there is no data to send.

Responses

The server’s response includes the following:

< HTTP Protocol Version, Status Code, and Reason Phrase
= Response Headers

= Response Data

Appendix G, HyperText Transfer Protocol 255

Responses

HTTP Protocol Version, Status Code,
and Reason Phrase

The server sends back a status code, which is a three-digit numeric code. The
five categories of status codes are:

100-199 a provisional response.
200-299 a successful transaction.
300-399 the requested resource should be retrieved from a different

location.

400-499 an error was caused by the browser.
500-599 a serious error occurred in the server.

Table 6.5 Common HTTP status codes

Status code

Meaning

200
302

304

401

403
404

500

OK; successful transaction.

Found. Redirection to a new URL. The original URL has
moved. This is not an error; most browsers will get the
new page.

Use a local copy. If a browser already has a page in its
cache, and the page is requested again, some browsers
(such as Netscape Navigator) relay to the web server the
“last-modified” timestamp on the browser’s cached copy.
If the copy on the server is not newer than the browser’s
copy, the server returns a 304 code instead of returning
the page, reducing unnecessary network traffic. This is
not an error.

Unauthorized. The user requested a document but didn’t
provide a valid username or password.

Forbidden. Access to this URL is forbidden.

Not found. The document requested isn’t on the server.
This code can also be sent if the server has been told to
protect the document by telling unauthorized people
that it doesn’t exist.

Server error. A server-related error occurred. The server
administrator should check the server’s error log to see
what happened.

256 NSAPI Programmer’s Guide

Responses

Response Headers

The response headers contain information about the server and the response
data. Common response headers are shown in Table 6.6.

ﬁ'able 6.6 Common response headers

Response header Description

Server The name and version of the web server.

Dat e The current date (in Greenwich Mean Time).

Last - nodi fi ed The date when the document was last modified.

Expi res The date when the document expires.
Content-length The length of the data that follows (in bytes).

Content -type The MIME type of the following data.

WAV aut henti cat e Used during authentication and includes information that

tells the browser software what is necessary for
authentication (such as username and password).

Response Data

The server sends a blank line after the last header. It then sends the response
data such as an image or an HTML page.

Appendix G, HyperText Transfer Protocol 257

Buffered Streams

Buffered Streams

New in iPlanet Web Server 4.1.

Buffered streams improve the efficiency of network 1/0 (for example the
exchange of HTTP requests and responses) especially for dynamic content
generation. Buffered streams are implemented in iPlanet Web Server 4.1 as
transparent NSPR 1/0 layers, which means even existing NSAPI modules can

use them without any change.

The buffered streams layer adds following features to the iPlanet Web Server:

Enhanced keep-alive support: When the response is smaller than the buffer
size, the buffering layer generates the cont ent - | engt h header so that
client can detect the end of the response and re-use the connection for
subsequent requests.

Response length determination: If the buffering layer cannot determine the
length of the response, it uses HTTP 1.1 chunked encoding instead of the
cont ent - | engt h header to convey the delineation information. If the client
only understands HTTP 1.0, the server must close the connection to indicate
the end of the response.

Deferred header writing: Response headers are written out as late as
possible to give the servlets a chance to generate their own headers (for
example, the session management header set - cooki e).

Ability to understand request entity bodies with chunked encoding: Though
popular clients do not use chunked encoding for sending POST request
data, this feature is mandatory for HTTP 1.1 compliance.

The improved connection handling and response length header generation
provided by buffered streams also addresses the HTTP 1.1 protocol compliance
issues where absense of the response length headers is regarded as a category
1 failure. In previous Enterprise Server versions it was the responsibility of the
dynamic content generation programs to send the length headers. If a CGI
script did not generate the cont ent - | engt h header, the server had to close the
connection to indicate the end of the response, breaking the keep-alive
mechanism. However, it is often very inconvenient to keep track of response
length in CGI scripts or servlets, and as an application platform provider, the
web server is expected to handle such low-level protocol issues.

258 NSAPI Programmer’s Guide

Buffered Streams

Output buffering has been built in to the functions that get data, which are
net _read and net buf _grab (see Chapter 5, “NSAPI Function Reference”). To
specify parameters that affect stream buffering, you can set the following
variables, which are described in detail in Appendix B, “Variables in
magnus.conf.”

« UseCQut put StreanSi ze

e flushTiner

e ChunkedRequest BufferSi ze
e ChunkedRequest Ti neout

To override the default parameters when invoking a SAF that uses one of the
functions net _r ead or net buf _gr ab, you would specify the value of the
parameter in obj . conf, for example:

Service fn="ny-service-saf" type=perf UseQutput Strean5i ze=8192

Appendix G, HyperText Transfer Protocol 259

Buffered Streams

260 NSAPI Programmer’s Guide

Appendix

Alphabetical List of NSAPI Functions
and Macros

CALLOC 132

cinfo find 132
condvar _init 133
condvar_notify 133
condvar _terninate 134
condvar_wait 134
crit_enter 134
crit_exit 135
crit_init 135

crit _termnate 136

daenon_atrestart 136

fil ebuf buf2sd 137

Appendix H, Alphabetical List of NSAPI Functions and Macros 261

filebuf close 137
filebuf _getc 138
filebuf _open 138
filebuf _open_nostat 139
FREE 139

func_exec 140

func_find 140

log _error 141

magnus_atrestart 142
MALLOC 142

net i p2host 143
net read 143

net socket 187
net_ wite 144

net buf _buf 2sd 144
net buf _cl ose 145
net buf _getc 145
net buf _grab 145
net buf _open 146

param create 146
param free 147

262 NSAPI Programmer’s Guide

pbl ock_copy 147

pbl ock_create 147

pbl ock_dup 148

pbl ock find 148

pbl ock_findval 149

pbl ock _free 149

pbl ock_nni nsert 149
pbl ock_nvinsert 150
pbl ock_pb2env 150

pbl ock_pbl ock2str 151
pbl ock_pi nsert 151

pbl ock_renmove 152

pbl ock_str2pbl ock 152
PERM CALLOC 153

PERM FREE 153

PERM MALLOC 154

PERM REALLOC 154

PERM _STRDUP 155

prot ocol _dunp822 155
protocol _set_finfo 156
protocol _start_response 156
prot ocol _status 157
protocol _uri2url 158
protocol _uri2url _dynam c 159

REALLOC 160

request _header 160
request _stat_path 161
request _translate_uri 162

sessi on_maxdns 162
shexp_casecnp 162
shexp_cnp 163
shexp_match 164

Appendix H, Alphabetical List of NSAPI Functions and Macros 263

shexp_valid 164
STRDUP 165

system errmsg 165
system fcl ose 166
system fl ock 166
system fopenRO 166
system f openRW 167
system fopenWA 167
system fread 168
systemfwite 168
systemfwite_atom c 169
systemgntime 169
systemlocaltime 170
system | seek 170
systemrename 171
system ul ock 171
system uni x2l ocal 172
systhread_attach 172
systhread_current 172
systhread_getdata 173
syst hread_newkey 173
systhread_setdata 174
systhread_sl eep 174
systhread_start 174
systhread_termi nate 175
systhread_tinerset 175

util _can_exec 176
util _chdir2path 176
util _chdir2path 177
util _cookie find 177
util _env_find 177
util _env_free 178
util _env_replace 178
util _env_str 179
util_getline 179
util _hostnane 180
util _is nozilla 180

264 NSAPI Programmer’s Guide

util _is_url 180

util _itoa 181

util _later_than 181
util_sh_escape 181
util_snprintf 182
util _sprintf 182
util_strcasecnp 183
util _strftinme 183
util _strncasecnp 184
util _uri_escape 185
util _uri _is_evil 185
util _uri_parse 186
util _uri_unescape 186
util _vsnprintf 186
util _vsprintf 187

Appendix H, Alphabetical List of NSAPI Functions and Macros 265

266 NSAPI Programmer’s Guide

Appendix

Alphabetical List of Directives in
magnus.conf

Accept Language 219
ACLFi | e 228
Address 214
Adm nLanguage 219
AsyncDNS 220

Bl ocki ngLi st enSockets 221

Cd Expi rationTi neout 226
CAWitPid (UNTX Only) 226
Chroot (Unix only) 229
ChunkedRequest Buf f er Si ze 234
ChunkedRequest Ti neout 234

Ci phers 230

Appendix |, Alphabetical List of Directives in magnus.conf 267

d i ent Language 219
Concurrency 214

DaenonStats (Unix Only) 226
Def aul t Language 219
DNS 220

ErrorLog 227

flushTi mer 233

KeepAl i veTi neout 221
Ker nel Threads 221

Li stenQ 222
Loadhj ects 217
LogVer bose 227

268 NSAPI Programmer’s Guide

MaxKeepAl i veConnecti ons 222
MaxProcs 222
M aHost 215

Nat i vePool MaxThr eads 225
Nat i vePool M nThr eads 225
Nat i vePool QueueSi ze 225
Nat i vePool St ackSi ze 224

Pi dLog 227
Port 215
Post Thr eadsEarly 222

RcvBuf Si ze 222
Root (hj ect 218
RqThrottl e 222
RqThrott| eM nPer Socket 223

Security 230
ServerCert 230
Serverl| D 215
Server Key 231
Server Nane 215

Appendix |, Alphabetical List of Directives in magnus.conf 269

Server Root 216

SndBuf Si ze 223

SSL2 232

SSL3 232

SSL3Ci phers 232
SSL3Sessi onTi neout 232
SSLCacheEntries 231
SSLC i ent Auth 231
SSLSessi onTi neout 231
St ackSi ze 223
StrictHttpHeaders 223

Ter mi nat eTi neout 223

Urask (UNI X only) 234
UseQut put St reanti ze 233
User 216

Virtual ServerFile 217

270 NSAPI Programmer’s Guide

Appendix

Alphabetical List of Pre-defined SAFs

add-footer 91
add- header 91
append-trailer 92
assi gn- nane 65

basi c-auth 62
basi c-ncsa 63

cache-init 42
cert2user 73
check-acl 74
cindex-init 45
conmon- | og 104

Appendix J, Alphabetical List of Pre-defined SAFs 271

deny- exi stence 74
dns-cache-init 47
docunent -r oot 67

find-index 75
find-1inks 76
find-pathinfo 76
flex-init 47
flex-1og 105
flex-rotate-init 53
force-type 85

get-client-cert 77
get-sslid 64

hone- page 68

magemap 93
ndex- conmon 94
ndex- si npl e 95
nit-cgi 54
nit-clf 54

ni t - uhone 55

272 NSAPI Programmer’s Guide

key-toosmal | 96

list-dir 96

| oad-config 79
| oad- nodul es 56
| oad-types 57

make-dir 97

nt-uri-clean 81
nt cgi check 82

parse-htm 98
pf x2dir 69
pool -init 58

query-handl er 98

Appendix J, Alphabetical List of Pre-defined SAFs 273

record-useragent 106
redirect 70

regi ster-http-method 59
renove-dir 99
renove-file 99
renanme-file 100
require-auth 82

send-cgi 100
send-error 107
send-file 101
send-range 102
send-shel l cgi 103
send-w ncgi 103
set-default-type 86
sht m - hackt ype 87
ssl-check 83
ssl -1 ogout 84

t hread- pool -init 59
type- by-exp 87
t ype- by- ext ensi on 88

uni x- hone 71
uni x-uri-clean 84
upl oad-file 103

274 NSAPI Programmer’s Guide

A

abbrev, value of sizefmt attribute 248

about this book 9
AcceptLanguage
magnus.conf directive 219
access
logging 104, 105
access control lists
see also ACLs
ACLFile
magnus.conf directive 228

ACLs
settings in magnus.conf 228

add-footer
Service-class function 91

add-header
Service-class function 91

AddLog 15
example of custom SAF 204
flow of control 34
requirements for SAFs 128
summary 22

AddLog directive
obj.conf 104

Address
magnus.conf directive 214

AdminLanguage
magnus.conf directive 219

alphabetical reference
magnus.conf variables 267
NSAPI functions 131
SAFs 271

API functions
cif find 132

condvar_init 133
condvar_notify 133
condvar_terminate 134
condvar_wait 134
crit_enter 134
crit_exit 135

crit_init 135
crit_terminate 136
daemon_atrestart 136
filebuf_buf2sd 137
filebuf close 137
filebuf_getc 138
filebuf_open 138
filebuf_open_nostat 139
FREE 139

func_exec 140
func_find 140
log_error 141
magnus_atrestart 142
MALLOC 132, 142
net_ip2host 143

net read 143
net_write 144
netbuf buf2sd 144
netbuf close 145
netbuf getc 145
netbuf _grab 145
netbuf_open 146
param_create 146
param_free 147
pblock_copy 147
pblock create 147
pblock dup 148
pblock find 148
pblock_findval 149
pblock_free 149
pblock_nninsert 149
pblock _nvinsert 150
pblock_pb2env 150

Index 275

pblock pblock2str 151 util_chdir2path 176

pblock_pinsert 151 util_cookie_find 177
pblock_remove 152 util_env_find 177
pblock_str2pblock 152 util_env_free 177
PERM_FREE 153 util_env_replace 178
PERM_MALLOC 153, 154 util_env_str 178
PERM_STRDUP 155 util_getline 179
protocol_dump822 155 util_hostname 179
protocol_set finfo 156 util_is_mozilla 180
protocol_start_response 156 util_is_url 180
protocol_status 157 util_itoa 180
protocol_uri2url 158, 159 util_later_than 181
REALLOC 160 util_sh_escape 181
request_header 160 util_snprintf 182
request_stat_path 161 util_strcasecmp 183
request_translate_uri 162 util_strftime 183
session_maxdns 162 util_strncasecmp 184
shexp_casecmp 162 util_uri_escape 184
shexp_cmp 163 util_uri_is_evil 185
shexp_match 164 util_uri_parse 185
shexp_valid 164 util_uri_unescape 186
STRDUP 165 util_vsnprintf 186
system_errmsg 165 util_vsprintf 186
system_fclose 166 util-cookie_find 177
system_flock 166 util-sprintf 182
system_fopenRO 166 append-trailer
system_fopenRW 167 Service-class function 92

system_fopenWA 167
system_fread 168
system_fwrite 168

assign-name
NameTrans-class function 65

system_fwrite_atomic 169 AsyncDNS o

system_gmtime 169 magnus.conf directive 220
system_localtime 170 AUTH_TYPE environment variable 128
system_Iseek 170 AUTH_USER environment variable 128
system_rename 171

system_ulock 170, 171 AuthTrans 15

directive, full description 61
example of custom SAF 191
flow of control 27
requirements for SAFs 125

system_unix2local 172
systhread_current 172
systhread_getdata 173
systhread_newkey 173

systhread_setdata 174 summary 20
systhread_sleep 174 auth-type function 62, 63
systhread_start 174

systhread_timerset 175 B

util_can_exec 175
basic-auth

276 NSAPI Programmer’s Guide

AuthTrans-class function 62

basic-ncsa
AuthTrans-class function 63

basics
of server operation 11

BlockingListenSockets
magnus.conf directive 221

browsers 13

buffered streams 258

builtin SAFs, core SAFs 39

bytes, value of sizefmt attribute 248

C

cache
enabling memory allocation pool 58
for static files 42, 101
cache-init
Init-class function 42
case sensitivity
in obj.conf 36
catch-all
Service directive 34
cert2user
PathCheck-class function 73
certificates
settings in magnus.conf 229
CGlI
environment variables in NSAPI 128
settings in magnus.conf 225
to NSAPI conversion 128
cgi attribute of the exec command 250

CGIlExpirationTimeout

magnus.conf directive 226
CGIWaitPid

magnus.conf directive 226
charset

defining default 86

check-acl
PathCheck-class function 74

checking
secret keys 83

Chroot

magnus.conf directive 229
chunked encoding 233
ChunkedRequestBufferSize

magnus.conf directive 234
ChunkedRequestTimeout

magnus.conf directive 234
cif find

API function 132
cindex-ini

Init-class function 45
cinfo

NSAPI data structure 211
cinfo_find

API function 132
Ciphers

magnus.conf directive 230

client
CLIENT tag 25
field in session parameter 111
getting DNS name for 210
getting IP address for 210
requests 13
sessions and 208

CLIENT_CERT environment variable 129

ClientLanguage
magnus.conf directive 219

CLIENT tag 25
cmd attribute of the exec command 250

comments
in obj.conf 37

common-log
Service-class function 104

Common Log subsystem, initializing 54
compiling

custom SAFs 116
Concurrency

Index 277

magnus.conf directive 214

condvar_init
API function 133

condvar_notify
API function 133

condvar_terminate
API function 134

condvar_wait
API function 134

config command
server-parsed HTML 248

config directory
location 12

configuration files 12
location 12

connectons
settings in magnus.conf 220

CONTENT_LENGTH environment variable 128
CONTENT _TYPE environment variable 128

content-encoding
defining default 86

content-language
defining default 86

creating
custom SAFs 109

crit_enter
API function 134

crit_exit

API function 135
crit_init

API function 135

crit_terminate
API function 136

csd
field in session parameter 111

custom SAFs
creating 109

278 NSAPI Programmer’s Guide

D

daemon_atrestart
API function 136

DaemonStats
magnus.conf directive 226

data structures
NSAPI reference 207

DATE_GMT
server parsed variable 251

DATE_LOCAL
server parsed variable 250

Day of month 245

default

Service directive 34
DefaultLanguage

magnus.conf directive 219
defining

custom SAFs 109
deny-existence

PathCheck-class function 74
directive_is_cacheable

field in request parameter 112
directives

for handling requests 16

in obj.conf 39

magnus.conf 213

order of 35

SAFs for each directive 124

summary for obj.conf 20

syntax in obj.conf 20
DNS

magnus.conf directive 220

dns-cache-init 47

DNS lookup

directives in magnus.conf 220
DNS names

getting clients 210
DOCUMENT_NAME

server parsed variable 250

DOCUMENT_URI

server parsed variable 250
document-root 67
documents

file typing 88
dynamic link library, loading 56

E

echo command
server-parsed HTML 249

enc 236

encoding
chunked 233

Enterprise Server
see server

environment variables
and init-cgi function 54
CGI to NSAPI conversion 128
in server-prased commands 250

errmsg attribute of config command 248
Error 16

Error directive
flow of control 35
obj.conf 107
requirements for SAFs 127
summary 23

ErrorLog
magnus.conf directive 227

error logging
settings in magnus.conf 226

errors
finding most recent system error 165
sending customized messages 108
examples
location in the build 190
of custom SAFs (plugins) 189
of custom SAFs in the build 190
wildcard patterns 242

exec command
server-parsed HTML 250

F

fancy indexing 45
file attribute of include command 249

filebuf_buf2sd
API function 137

filebuf close
API function 137

filebuf_getc
API function 138

filebuf_open
API function 138

filebuf_open_nostat
API function 139

file cache 42
and logging 50
initializing 42

file descriptor
closing 166
locking 166
opening read-only 166
opening read-write 167
opening write-append 167
reading into a buffer 168
unlocking 170, 171
writing from a buffer 168
writing without interruption 169

file 170 routines 123

file name extensions
mapping to MIME types 57
MIME types 235
object type 30

files

forcing type of 86

mapping types of 235

typing 88

typing by wildcard pattern 87
file types 86
find-index

PathCheck-class function 75
find-links

PathCheck-class function 76

Index 279

find-pathinfo
PathCheck-class function 76

flastmod command
affected by timefmt attribute 248
server-parsed HTML 250

flexible logging 47
flex-init
Init-class function 47

flex-log
AddLog-class function 105

flex-rotate-init
Init-class function 53

flow of control 26

flushTimer
magnus.conf directive 233

fn argument
in directives in obj.conf 20

footers
adding 91

force-type 31
example 31
ObjectType-class function 85

forcing
object type 30

formats
time 245

forward slashes 37

FREE
API function 139

fsize command
server-parsed HTML 249

func_exec
API function 140

func_find
API function 140

funcs 117
funcs parameter 56

functions
pre-defined SAFs 39
see also SAFs

280 NSAPI Programmer’s Guide

G

GATEWAY _INTERFACE environment
variable 128

GET
method 89

get-client-cert
PathCheck-class function 77

GMT time
getting thread-safe value 169

-G option 116

H

hard links, finding 76

HEAD
method 89

header files
nsapi.h 116, 207
headers 14
adding 91
field in request parameter 112
home-page 68
HOST environment variable 129

HTML tags
server-parsed 247

HTTP 253
basics 14
compliance with 1.1 254
requests 254
responses 255
HTTP_* environment variable 128

HTTP method
registering 59

HTTPS_KEYSIZE environment variable 129

HTTPS_SECRETKEYSIZE environment
variable 129

HTTPS environment variable 129

HUP signal
Chroot and 229
PidLog and 227

HyperText Transfer Protocol
see HTTP

imagemap
Service-class function 93
include command
server-parsed HTML 249
include directory
for SAFs 116
index-common
Service-class function 94
indexing
fancy 45
index-simple
Service-class function 95
Init
flow of control 26
obj.conf directive 41
requirements for SAFs 125
summary 20
init-cgi 54
Init-class function 47, 54
init-clf
Init-class function 54
initializing
global settings 213
plugins 117
SAFs 117
initializing for CGI 54
init-uhome
Init-class function 55
IP address
getting clients 210

iPlanet Web Server
see server

iPlanet Web Server Administrator’'s Guide 222,
223

iponly function 105, 106

K

KeepAliveTimeout
magnus.conf directive 221

KernelThreads
magnus.conf directive 221

key-toosmall
Service-class function 96

L

lang 236
language issues

directives in magnus.conf 218
LAST_MODIFIED

server parsed variable 251
Latelnit parameter to Init directive 42
line continuation 37
linking

SAFs 116
list-dir

Service-class function 96

ListenQ

magnus.conf directive 222
load-config

PathCheck-class function 79
loading

custom SAFs 117

MIME types file 236

plugins 117

SAFs 117
load-modules 117

example 118

Init-class function 56
LoadObijects

magnus.conf directive 217
load-types

Init-class function 57
localtime

getting thread-safe value 170

local-types parameter 58

Index 281

log_error sample of 239

API function 141 MIME types 235
log analyzer 104, 105 mapping from file name extensions 57
log file 104, 105 typing files 88

analyzer for 104, 105 MIME types file
log format 49 loading 236

. syntax 238

logging

cookies 50 MIME-types parameter 58

flexible 47 month name 245

impact on cache acceleration 50 mozilla-redirect 69

relaxed mode 49
rotating logs 53
settings in magnus.conf 226

MtaHost
magnus.conf directive 215

LogVerbose
magnus.conf directive 227 N
name attribute
M in obj.conf objects 23

in objects 24

NameTrans 15
directive in obj.conf 65
example of custom SAF 193

magnus.conf 12, 213
alphabetical list of directives 267
directives in 213

magnus_atrestart flow of control 27
API function 142 requirements for SAFs 126
make-dir summary 21
Service-class function 97 NameTrans-class function 67, 68, 69
Makefile file 116 NativePoolMaxThreads
MALLOC magnus.conf directive 225
API function 132, 142 NativePoolMinThreads
matching magnus.conf directive 225
special characters 241 NativePoolQueueSize
MaxKeepAliveConnections magnus.conf directive 225
magnus.conf directive 222 NativePoolStackSize
MaxProcs magnus.conf directive 224
magnus.conf directive 222 NativeThread 60
memory allocation, pool-init Init-class NativeThread parameter to Init directive 57
function 58 .
) native thread pools
memory management routines 122 defining in obj.conf 59
method 14 settings in magnus.conf 224
server and 89 NativeThreads 247
mime.types 13 net_ip2host
mime.types file 235, 236 API function 143

282 NSAPI Programmer’s Guide

net_read
API function 143

net write
API function 144

netbuf buf2sd
API function 144

netbuf _close
API function 145

netbuf getc
API function 145

netbuf grab
API function 145

netbuf_open

API function 146
network 1/0 routines 123
NSAPI

alphabetical function reference
functions

NSAPI reference 131

CGI environment variables 128
data structures reference 207
using 16

nsapi.h 116, 207
location 116
overview of data structures 207

NSAPI functions
overview 120

NSCP_POOL_STACKSIZE 224
NSCP_POOL_THREADMAX 224
NSCP_POOL_WORKQUEUEMAX 224
nshttpd3x.lib 116

nshttpd40.lib 116

ntcgicheck
PathCheck-class function 82

ntrans-base 66, 67, 69, 77

nt-uri-clean
PathCheck-class function 81

@)

obj.conf 12
adding directives for new SAFs 118
case sensitivity 36
CLIENT tag 25
comments 37
directives 19, 39
directives summary 20
directive syntax 20
flow of control 26
OBJECT tag 23
parameters for directives 36
processinng other objects 28
server instructions 19
syntax rules 35
use 19

object
default,
specifying 218
object configuration file
specifying in magnus.conf 217

objects
processing non-default objects 28

OBJECT tag 23
name attribute 23
ppath attribute 23

ObjectType 15
directive in obj.conf 85
example of custom SAF 199
flow of control 29
requirements for SAFs 127
summary 21

object type
forcing 30
setting by file extension 30

order
of directives in obj.conf 35

overview
server operation 11

P

param_create

Index 283

API function 146

param_free
API function 147
parameter block
manipulation routines 121
SAF parameter 110
parameters
for obj.conf directives 36
for SAFs 110
parse-html
Service-class function 98

path
absolute with Chroot directive 229

PATH_INFO environment variable 128
PATH_TRANSLATED environment variable 128

PathCheck 15
directive in obj.conf 72
example of custom SAF 196
flow of control 29
requirements for SAFs 126
summary 21
path name
converting Unix-style to local 172

path names 37

patterns 241
pb

SAF parameter 110
pb_entry

NSAPI data structure 209

pb_param
NSAPI data structure 209

pblock
NSAPI data structure 209
see parameter block

pblock_copy
API function 147

pblock_create
API function 147

pblock _dup
API function 148

284 NSAPI Programmer’s Guide

pblock_find
API function 148

pblock_findval
API function 149

pblock_free
API function 149

pblock_nninsert
API function 149

pblock_nvinsert
API function 150

pblock pb2env
API function 150

pblock_pblock2str
API function 151

pblock_pinsert
API function 151

pblock_remove
API function 152

pblock_str2pblock
API function 152

PERM_FREE
API function 153

PERM_MALLOC
API function 153, 154

PERM_STRDUP
API function 155

pfx2dir 69
example 28
NameTrans-class function 69

PidLog
magnus.conf directive 227
plugins
creating 109
example of new plugins 189
instructing the server to use 118
loading and initializing 117
pool-init Init-class function 58
port
magnus.conf directive 215
specifying 215
POST

method 89

PostThreadsEarly
magnus.conf directive 222

ppath attribute
in obj.conf objects 23
in objects 25

predefined SAFs 39
preface 9

processes
settings in magnus.conf 220

processing
non-default objects 28

protocol_dump822
API function 155

protocol_set_finfo
API function 156

protocol_start_response
API function 156

protocol_status
API function 157

protocol_uri2url
API function 158, 159

protocol utility routines 122

Q

QUERY_STRING_UNESCAPED
server parsed variable 250

QUERY_STRING environment variable 129
QUERY environment variable 129

query-handler
Service-class function 98

quotes 36

R

RecvBufSize
magnus.conf directive 222

REALLOC
API function 160

record-useragent

Service-class function 106
redirect
NameTrans-class function 70

reference
NSAPI data structures 207
NSAPI functions 131

register-http-method Init-class function 59

relaxed logging 49
relink_36plugin file 116

REMOTE_ADDR environment variable 129
REMOTE_HOST environment variable 129
REMOTE_IDENT environment variable 129
REMOTE_USER environment variable 129

remove-dir

Service-class function 99
remove-file

Service-class function 99
rename-file

Service-class function 100
REQ_ABORTED

response code 114
REQ EXIT

response code 114
REQ_NOACTION

response code 113
REQ_PROCEED

response code 113

reqpb

field in request parameter 112

request
NSAPI data structure 210
SAF parameter 111

REQUEST_METHOD environment variable 129

request_stat_path
API function 161

request_translate_uri
API function 162

request-handling process 13
flow of control 26

Index 285

steps 15

request-header
API function 160
request-response process 13
see request-handling process

requests
directives for handling 16
how server handles 13
HTTP 254
methods 14
steps in handling 15
require-auth
PathCheck-class function 82
responses, HTTP 255
result codes 113
RootObject
magnus.conf directive 218
rotating logs 53
rq
SAF parameter 111
rg->directive_is_cacheable 112
rq->headers 112
rq->regpb 112
rq->srvhdrs 112
rg->vars 112
RqgThrottle
magnus.conf directive 222
RgThrottleMinPerSocket
magnus.conf directive 223

rules
for editing obj.conf 35

S

SAFs
alphabetical list 271
compiling and linking 116
creating 109
examples of custom SAFs 189
for each directive 124
include directory 116

286 NSAPI Programmer’s Guide

interface 110

loading and initializing 117
parameters 110
predefined 39

result codes 113

return values 113
signature 110

writing new 16

SCRIPT_NAME environment variable 129

search patterns 241

secret keys
checking 83

Security
magnus.conf directive 230

security

constraining the server 229

settings in mangus.conf 229
send-cgi

Service-class function 100
send-error

Error-class function 107

send-file
Service-class function 101

send-range

Service-class function 102
send-shellcgi

Service-class function 103
send-wincgi

Service-class function 103
separators 36

server
constraining 229
flow of control 26
HUP signal 227

initialization variables in magnus.conf 213

initializing 41

instructions for using plugins 118

instructions in obj.conf 19
killing process of 227
modifying 11

processing non-default objects 28

request handling 13

TERM signal 227
SERVER_NAME environment variable 129
SERVER_PORT environment variable 129
SERVER_PROTOCOL environment variable 129
SERVER_SOFTWARE environment variable 129
SERVER_URL environment variable 129

Server Application Functions
see SAFs

ServerCert
magnus.conf directive 230

ServerlD
magnus.conf directive 215

server information
magnus.conf directives 214

ServerKey
magnus.conf directive 231

ServerName
magnus.conf directive 215

server-parsed HTML tags 247

ServerRoot
magnus.conf directive 216

server-side
HTML tags 247
includes 247

Service 15
default directive 34
directive in obj.conf 89
directives for new SAFs (plugins) 119
example of custom SAF 202
examples 32
flow of control 31
requirements for SAFs 127
summary 22
session
defined 208
NSAPI data structure 208
resolving the IP address of 162
SAF parameter 111
Session->client
NSAPI data structure 210

session_maxdns

API function 162

set-default-type
ObjectType-class function 86

shared library, loading 56

shell expression
comparing (case-blind) to a string 162
comparing (case-sensitive) to a string 163,
164
validating 164

shexp_casecmp
API function 162

shexp_cmp
API function 163

shexp_match
API function 164

shexp_valid
API function 164

shlib 117
shlib parameter 56

shmem_s
NSAPI data structure 211

shtml_init 247
shtml_send 247

shtml-hacktype
ObjectType-class function 87

sizefmt attribute of config command 248

sn
SAF parameter 111

sn->client 111
sn->csd 111

SndBufSize
magnus.conf directive 223
socket
closing 145
reading from 143
sending a buffer to 144
sending file buffer to 137
writing to 144
spaces 37

special characters 241

Index 287

sprintf, see util_sprintf 182
srvhdrs

field in request parameter 112

SSL

settings in magnus.conf 229
SSL2

magnus.conf directive 232
SSL3Ciphers

magnus.conf directive 232
SSL3SessionTimeout

magnus.conf directive 232
SSLCacheEntries

magnus.conf directive 231
ssl-check

PathCheck-class function 83
SSLClientAuth

magnus.conf directive 231
SSLSessionTimeout

magnus.conf directive 231
StackSize

magnus.conf directive 223
stat

structure 211
statistic collection

settings in magnus.conf 226
STRDUP

API function 165

streams
buffered 258
StrictHttpHeaders
magnus.conf directive 223
string
creating a copy of 165
symbolic links
finding 76
syntax
directives in obj.conf 20
for editing obj.conf 35
MIME types file 238

system 171

288 NSAPI Programmer’s Guide

system_errmsg
API function 165

system_fclose
API function 166

system_flock
API function 166

system_fopenRO
API function 166

system_fopenRW
API function 167

system_fopenWA
API function 167

system_fread
API function 168

system_fwrite
API function 168

system_fwrite_atomic
API function 169

system_gmtime
API function 169

system_localtime
API function 170

system_lseek
API function 170

system_rename
API function 171

system_ulock

API function 170, 171

system_unix2local
API function 172

systhread_current
API function 172

systhread_getdata
API function 173

systhread_newkey
API function 173

systhread_setdata
API function 174

systhread_sleep
API function 174

systhread_start
API function 174

systhread_timerset
API function 175

T

TerminateTimeout
magnus.conf directive 223

TERM signal 227

thread
allocating a key for 173
creating 174
getting a pointer to 172
getting data belonging to 173
putting to sleep 174
setting data belonging to 174
setting interrupt timer 175

thread-pool-init Init-class function 59

thread pools
defining in obj.conf 59
settings in magnus.conf 224

thread routines 123

threads
settings in magnus.conf 220

timefmt tag 248
time formats 245
trailers
appending 92
type
content-type 236
type-by-exp
ObjectType-class function 87

type-by-extension 236
ObjectType-class function 88

U

Umask

magnus.conf directive 234
Unix

constraining the server 229

unix-home
NameTrans-class function 71

unix-uri-clean
PathCheck-class function 84
Unix user account
specifying 216
upload-file
Service-class function 103
URL
mapping to other servers 69
translated to file path 21

UseOutputStreamSize
magnus.conf directive 233

User
magnus.conf directive 216
user account
specifying 216
user home directories
symlinks and 76

util_can_exec
API function 175

util_chdir2path
API function 176
util_cookie_find
API function 177
util_env_find
API function 177

util_env_free
API function 177

util_env_replace
API function 178

util_env_str
API function 178

util_getline
API function 179

util_hostname
API function 179

util_is_mozilla
API function 180

util_is_url

Index 289

API function 180

util_itoa
API function 180

util_later_than
API function 181

util_sh_escape
API function 181

util_snprintf
API function 182

util_sprintf
API function 182

util_strcasecmp
API function 183

util_strftime 245
API function 183

util_strncasecmp
API function 184

util_uri_escape
API function 184
util_uri_is_evil
API function 185

util_uri_parse
API function 185

util_uri_unescape
API function 186

util_vsnprintf
API function 186

util_vsprintf
API function 186

utility routines 124

\

variables
magnus.conf 213

vars

field in request parameter 112
virtual attribute of the include command 249

VirtualServerFile

magnus.conf directive 217

290 NSAPI Programmer’s Guide

vsnprintf, see util_vsnprintf 186
vsprintf, see util_vsprintf 186

W%

weekday 245

wildcard patterns 241
file typing and 87

iii
About This Book 9
Basics of Server Operation 11
Configuration Files 12
magnus.conf 12
obj.conf 12
mime.types 13
How the Server Handles Requests from Clients 13
HTTP Basics 14
Steps in the Request Handling Process 15
Directives for Handling Requests 16
Using NSAPI to Write New Server Application Functions 16
Syntax and Use of obj.conf 19
Server Instructions in obj.conf 19
Summary of the Directives 20
Object and Client Tags 23
The Object Tag 23
The Client Tag 25
Flow of Control in obj.conf 26
Init 26
AuthTrans 27
NameTrans 27
PathCheck 29
ObjectType 29
Service 31
AddLog 34
Error 35
Syntax Rules for Editing obj.conf 35
Order of Directives 35
Parameters 36
Case Sensitivity 36
Separators 36
Quotes 36
Spaces 37
Line Continuation 37
Path Names 37

291

Comments 37

Predefined SAFs and the Request Handling Process 39
Init Stage 41

AuthTrans Stage 61

NameTrans Stage 65

PathCheck Stage 72

ObjectType Stage 85

Service Stage 89

AddLog Stage 104

Error Stage 107

Creating Custom SAFs 109

The SAF Interface 110

SAF Parameters 110

pb (parameter block) 110

sn (session) 111

rq (request) 111

Result Codes 113

Creating and Using Custom SAFs 114
Write the Source Code 115
Compileand Link 116

Load and Initialize the SAF 117
Instruct the Server to Call the SAFs 118
Stop and Start the Server 120

Test the SAF 120

Overview of NSAPI C Functions 120
Parameter Block Manipulation Routines 121
Protocol Utilities for Service SAFs 122
Memory Management 122

Filel1/O 123

Network /0 123

Threads 123

Utilities 124

Required Behavior of SAFsfor Each Directive 124
Init SAFs 125

AuthTrans SAFs 125

NameTrans SAFs 126

292 NSAPI Programmer’s Guide

PathCheck SAFs 126
ObjectType SAFs 127

Service SAFs 127

Error SAFs 127

AddLog SAFs 128

CGlI to NSAPI Conversion 128
NSAPI Function Reference 131

NSAPI Functions (in Alphabetical Order) 131

Examples of Custom SAFs 189
Examplesin the Build 190
AuthTrans Example 191
Installing the Example 191
Source Code 192

NameTrans Example 193
Installing the Example 195
Source Code 195

PathCheck Example 196
Installing the Example 196
Source Code 197

ObjectType Example 199
Installing the Example 200
Source Code 200

Service Example 202

Installing the Example 202
Source Code 202

More Complex Service Example 204
AddLog Example 204
Installing the Example 205
Source Code 205

Data Structure Reference 207
Privatization of Some Data Structures 208
session 208

pblock 209

pb_entry 209

pb_param 209

Session->client 210

293

request 210

stat 211

shmem s211

cinfo 211

Variables in magnus.conf 213

Server Information 214

Object Configuration File 217
Language Issues 218

DNS Lookup 220

Threads, Processes and Connections 220
Native Thread Pools 224

CGlI 225

Error Logging and Statistic Collection 226
ACL 228

Security 229

Chunked Encoding 233

Miscellaneous 234

MIME Types 235

Introduction 235

Loading the MIME Types File 236
Determining the MIME Type 236

How the Type Affects the Response 237
What Does the Client Do with the MIME Type? 238
Syntax of the MIME Types File 238
Sample MIME Types File 239

Wildcard Patterns 241

Wildcard Patterns 241

Wildcard Examples 242

Time Formats 245

Server-Parsed HTML Tags 247

Using Server-Parsed Commands 247
config 248

include 249

echo 249

fsize 249

flastmod 250

294 NSAPI Programmer’s Guide

exec 250
Environment Variables in Commands 250
HyperText Transfer Protocol 253
Compliance 254
Requests 254
Reguest Method, URI, and Protocol Version 254
Request Headers 255
Request Data 255
Responses 255
HTTP Protocol Version, Status Code, and Reason Phrase 256
Response Headers 257
Response Data 257
Buffered Streams 258
Alphabetical List of NSAPI Functions and Macros 261
Alphabetical List of Directivesin magnus.conf 267
Alphabetical List of Pre-defined SAFs 271
275

295

	About This Book
	Basics of Server Operation
	Configuration Files
	magnus.conf
	obj.conf
	mime.types

	How the Server Handles Requests from Clients
	HTTP Basics
	Steps in the Request Handling Process
	Directives for Handling Requests

	Using NSAPI to Write New Server Application Functions

	Syntax and Use of obj.conf
	Server Instructions in obj.conf
	Summary of the Directives

	Object and Client Tags
	The Object Tag
	Objects that Use the Name Attribute
	Object that Use the Ppath Attribute

	The Client Tag

	Flow of Control in obj.conf
	Init
	AuthTrans
	NameTrans
	How the Server Knows to Process Other Objects

	PathCheck
	ObjectType
	Setting the Type By File Extension
	Forcing the Type

	Service
	Service Examples
	Default Service Directive

	AddLog
	Error

	Syntax Rules for Editing obj.conf
	Order of Directives
	Parameters
	Case Sensitivity
	Separators
	Quotes
	Spaces
	Line Continuation
	Path Names
	Comments

	Predefined SAFs and the Request Handling Process
	Init Stage
	cache-init
	Note
	Parameters:
	Example

	cindex-init
	Parameters:
	Examples
	See Also

	dns-cache-init
	Parameters
	Example

	flex-init
	Parameters
	More on Log Format
	Examples
	See Also

	flex-rotate-init
	Parameters
	Example
	See Also

	init-cgi
	Parameters
	Example
	See Also

	init-clf
	Parameters
	Examples
	See Also

	init-uhome
	Parameters
	Examples
	See Also

	load-modules
	Parameters
	Examples

	load-types
	Parameters
	Examples
	See Also

	pool-init
	Parameters
	Example

	register-http-method
	Parameters
	Example

	thread-pool-init
	Parameters
	Example
	See also

	AuthTrans Stage
	basic-auth
	Parameters
	Examples
	See Also

	basic-ncsa
	Parameters
	Examples
	See Also

	get-sslid
	Parameters

	NameTrans Stage
	assign-name
	Parameters
	Example

	document-root
	Parameters
	Examples
	See also

	home-page
	Parameters
	Examples

	pfx2dir
	Parameters
	Examples

	redirect
	Parameters
	Examples

	unix-home
	Parameters
	Examples
	See Also

	PathCheck Stage
	cert2user
	Parameters
	Examples

	check-acl
	Parameters
	Examples

	deny-existence
	Parameters
	Examples

	find-index
	Parameters
	Examples

	find-links
	Parameters
	Examples
	See Also

	find-pathinfo
	Parameters
	Examples

	get-client-cert
	Parameters
	Examples

	load-config
	Parameters
	Examples

	nt-uri-clean
	See Also

	ntcgicheck
	See Also

	require-auth
	Parameters
	Examples
	See Also

	ssl-check
	Parameters

	ssl-logout
	Parameters

	unix-uri-clean
	Parameters
	Examples
	See Also

	ObjectType Stage
	force-type
	Parameters
	Examples
	See Also

	set-default-type
	Parameters
	Example

	shtml-hacktype
	Parameters
	Examples

	type-by-exp
	Parameters
	Examples
	See Also

	type-by-extension
	Parameters
	Examples
	See Also

	Service Stage
	add-footer
	Parameters
	Examples
	See Also

	add-header
	Parameters
	Examples
	See Also

	append-trailer
	Parameters
	Examples
	See Also

	imagemap
	Parameters
	Examples

	index-common
	Parameters
	Examples
	See Also

	index-simple
	Parameters
	Examples
	See Also

	key-toosmall
	Parameters
	Examples

	list-dir
	Parameters
	Examples

	make-dir
	Parameters
	Examples

	parse-html
	Parameters
	Examples

	query-handler
	Parameters
	Examples

	remove-dir
	Parameters
	Examples

	remove-file
	Parameters
	Examples

	rename-file
	Parameters
	Examples

	send-cgi
	Parameters
	Examples

	send-file
	Parameters
	Examples

	send-range
	Parameters
	Examples

	send-shellcgi
	Parameters
	Examples

	send-wincgi
	Parameters
	Examples

	upload-file
	Parameters
	Examples

	AddLog Stage
	common-log
	Parameters
	Examples
	See Also

	flex-log
	Parameters
	Examples
	See Also

	record-useragent
	Parameters
	Examples
	See Also

	Error Stage
	send-error
	Parameters
	Examples

	Creating Custom SAFs
	The SAF Interface
	SAF Parameters
	pb (parameter block)
	sn (session)
	rq (request)

	Result Codes
	Creating and Using Custom SAFs
	Write the Source Code
	Compile and Link
	Load and Initialize the SAF
	Instruct the Server to Call the SAFs
	Stop and Start the Server
	Test the SAF

	Overview of NSAPI C Functions
	Parameter Block Manipulation Routines
	Protocol Utilities for Service SAFs
	Memory Management
	File I/O
	Network I/O
	Threads
	Utilities

	Required Behavior of SAFs for Each Directive
	Init SAFs
	AuthTrans SAFs
	NameTrans SAFs
	PathCheck SAFs
	ObjectType SAFs
	Service SAFs
	Error SAFs
	AddLog SAFs

	CGI to NSAPI Conversion

	NSAPI Function Reference
	NSAPI Functions (in Alphabetical Order)
	CALLOC
	Syntax
	Returns
	Parameters
	Example
	See also

	cinfo_find
	Syntax
	Returns
	Parameters

	condvar_init
	Syntax
	Returns
	Parameters
	See also

	condvar_notify
	Syntax
	Returns
	Parameters
	See also

	condvar_terminate
	Warning
	Syntax
	Returns
	Parameters
	See also

	condvar_wait
	Syntax
	Returns
	Parameters
	See also

	crit_enter
	Syntax
	Returns
	Parameters
	See also

	crit_exit
	Syntax
	Returns
	Parameters
	See also

	crit_init
	Warning
	Syntax
	Returns
	Parameters
	See also

	crit_terminate
	Syntax
	Returns
	Parameters
	See also

	daemon_atrestart
	Syntax
	Returns
	Parameters
	Example

	filebuf_buf2sd
	Syntax
	Returns
	Parameters
	Example
	See also

	filebuf_close
	Syntax
	Returns
	Parameters
	Example
	See also

	filebuf_getc
	Syntax
	Returns
	Parameters
	See also

	filebuf_open
	Syntax
	Returns
	Parameters
	Example
	See also

	filebuf_open_nostat
	Syntax
	Returns
	Parameters
	Example
	See also

	FREE
	Syntax
	Returns
	Parameters
	Example
	See also

	func_exec
	Syntax
	Returns
	Parameters
	See also

	func_find
	Syntax
	Returns
	Parameters
	Example
	See also

	log_error
	Syntax
	Returns
	Parameters
	Example
	See also

	magnus_atrestart
	Syntax
	Returns
	Parameters
	Example

	MALLOC
	Syntax
	Returns
	Parameters
	Example
	See also

	net_ip2host
	Syntax
	Returns
	Parameters

	net_read
	Syntax
	Returns
	Parameters
	See also

	net_write
	Syntax
	Returns
	Parameters
	Example
	See also

	netbuf_buf2sd
	Syntax
	Returns
	Parameters
	See also

	netbuf_close
	Syntax
	Returns
	Parameters
	See also

	netbuf_getc
	Syntax
	Returns
	Parameters
	See also

	netbuf_grab
	Syntax
	Returns
	Parameters
	See also

	netbuf_open
	Syntax
	Returns
	Parameters
	See also

	param_create
	Syntax
	Returns
	Parameters
	Example
	See also

	param_free
	Syntax
	Returns
	Parameters
	Example
	See also

	pblock_copy
	Syntax
	Returns
	Parameters
	See also

	pblock_create
	Syntax
	Returns
	Parameters
	See also

	pblock_dup
	Syntax
	Returns
	Parameters
	See also

	pblock_find
	Syntax
	Returns
	Parameters
	See also

	pblock_findval
	Syntax
	Returns
	Parameters
	Example
	See also

	pblock_free
	Syntax
	Returns
	Parameters
	See also

	pblock_nninsert
	Syntax
	Returns
	Parameters
	See also

	pblock_nvinsert
	Syntax
	Returns
	Parameters
	Example
	See also

	pblock_pb2env
	Syntax
	Returns
	Parameters
	See also

	pblock_pblock2str
	Syntax
	Returns
	Parameters
	See also

	pblock_pinsert
	Syntax
	Returns
	Parameters
	See also

	pblock_remove
	Syntax
	Returns
	Parameters
	See also

	pblock_str2pblock
	Syntax
	Returns
	Parameters
	See also

	PERM_CALLOC
	Syntax
	Returns
	Parameters
	Example
	See also

	PERM_FREE
	Syntax
	Returns
	Parameters
	Example
	See also

	PERM_MALLOC
	Syntax
	Returns
	Parameters
	Example
	See also

	PERM_REALLOC
	Warning
	Syntax
	Returns
	Parameters
	Example
	See also

	PERM_STRDUP
	Syntax
	Returns
	Parameters
	See also

	protocol_dump822
	Syntax
	Returns
	Parameters
	See also

	protocol_set_finfo
	Syntax
	Returns
	Parameters
	See also

	protocol_start_response
	Syntax
	Returns
	Parameters
	Example
	See also

	protocol_status
	Syntax
	Returns
	Parameters
	Example
	See also

	protocol_uri2url
	Syntax
	Returns
	Parameters
	See also

	protocol_uri2url_dynamic
	Syntax
	Returns
	Parameters
	See also

	REALLOC
	Warning
	Syntax
	Returns
	Parameters
	Example
	See also

	request_header
	Syntax
	Returns
	Parameters
	See also

	request_stat_path
	Syntax
	Returns
	Parameters
	Example
	See also

	request_translate_uri
	Syntax
	Returns
	Parameters
	See also

	session_maxdns
	Syntax
	Returns
	Parameters

	shexp_casecmp
	Syntax
	Returns
	Parameters
	See also

	shexp_cmp
	Syntax
	Returns
	Parameters
	Example
	See also

	shexp_match
	Syntax
	Returns
	Parameters
	See also

	shexp_valid
	Syntax
	Returns
	Parameters
	See also

	STRDUP
	Syntax
	Returns
	Parameters
	Example
	See also

	system_errmsg
	Syntax
	Returns
	Parameters
	See also

	system_fclose
	Syntax
	Returns
	Parameters
	Example
	See also

	system_flock
	Syntax
	Returns
	Parameters
	See also

	system_fopenRO
	Syntax
	Returns
	Parameters
	See also

	system_fopenRW
	Syntax
	Returns
	Parameters
	Example
	See also

	system_fopenWA
	Syntax
	Returns
	Parameters
	See also

	system_fread
	Syntax
	Returns
	Parameters
	See also

	system_fwrite
	Syntax
	Returns
	Parameters
	See also

	system_fwrite_atomic
	Syntax
	Returns
	Parameters
	Example
	See also

	system_gmtime
	Syntax
	Returns
	Parameters
	Example
	See also

	system_localtime
	Syntax
	Returns
	Parameters
	See also

	system_lseek
	Syntax
	Returns
	Parameters
	See also

	system_rename
	Syntax
	Returns
	Parameters

	system_ulock
	Syntax
	Returns
	Parameters
	See also

	system_unix2local
	Syntax
	Returns
	Parameters
	See also

	systhread_attach
	Syntax
	Returns
	Parameters
	See also

	systhread_current
	Syntax
	Returns
	Parameters
	See also

	systhread_getdata
	Syntax
	Returns
	Parameters
	See also

	systhread_newkey
	Syntax
	Returns
	Parameters
	See also

	systhread_setdata
	Syntax
	Returns
	Parameters
	See also

	systhread_sleep
	Syntax
	Returns
	Parameters
	See also

	systhread_start
	Syntax
	Returns
	Parameters
	See also

	systhread_timerset
	Syntax
	Returns
	Parameters
	See also

	util_can_exec
	Unix only
	Syntax
	Returns
	Parameters
	See also

	util_chdir2path
	Syntax
	Returns
	Parameters

	util_chdir2path
	Syntax
	Returns
	Parameters

	util_cookie_find
	Syntax
	Returns
	Parameters

	util_env_find
	Syntax
	Returns
	Parameters
	See also

	util_env_free
	Syntax
	Returns
	Parameters
	See also

	util_env_replace
	Syntax
	Returns
	Parameters
	See also

	util_env_str
	Syntax
	Returns
	Parameters
	See also

	util_getline
	Syntax
	Returns
	Parameters
	See also

	util_hostname
	Syntax
	Returns
	Parameters

	util_is_mozilla
	Syntax
	Returns
	Parameters
	See also

	util_is_url
	Syntax
	Returns
	Parameters
	See also

	util_itoa
	Syntax
	Returns
	Parameters

	util_later_than
	Syntax
	Returns
	Parameters
	See also

	util_sh_escape
	Syntax
	Returns
	Parameters
	See also

	util_snprintf
	Syntax
	Returns
	Parameters
	See also

	util_sprintf
	Syntax
	Returns
	Parameters
	Example
	See also

	util_strcasecmp
	Syntax
	Returns
	Parameters
	See also

	util_strftime
	Syntax
	Returns
	Parameters
	See also

	util_strncasecmp
	Syntax
	Returns
	Parameters
	See also

	util_uri_escape
	Syntax
	Returns
	Parameters
	See also

	util_uri_is_evil
	Syntax
	Returns
	Parameters
	See also

	util_uri_parse
	Syntax
	Returns
	Parameters
	See also

	util_uri_unescape
	Syntax
	Returns
	Parameters
	See also

	util_vsnprintf
	Syntax
	Returns
	Parameters
	See also

	util_vsprintf
	Syntax
	Returns
	Parameters
	See also

	Examples of Custom SAFs
	Examples in the Build
	AuthTrans Example
	Installing the Example
	Source Code

	NameTrans Example
	Installing the Example
	Source Code

	PathCheck Example
	Installing the Example
	Source Code

	ObjectType Example
	Installing the Example
	Source Code

	Service Example
	Installing the Example
	Source Code
	More Complex Service Example

	AddLog Example
	Installing the Example
	Source Code

	Data Structure Reference
	Privatization of Some Data Structures
	session
	pblock
	pb_entry
	pb_param
	Session->client
	request
	stat
	shmem_s
	cinfo

	Variables in magnus.conf
	Note
	Server Information
	Address
	Concurrency
	MtaHost
	Port
	Syntax
	Default
	Examples

	ServerID
	ServerName
	Syntax
	Default
	Examples

	ServerRoot
	Syntax
	Example

	User
	Syntax
	Default
	Examples

	VirtualServerFile

	Object Configuration File
	LoadObjects
	Syntax
	Default
	Examples

	RootObject
	Syntax
	Default
	Examples

	Language Issues
	AcceptLanguage
	Default

	AdminLanguage
	ClientLanguage
	DefaultLanguage

	DNS Lookup
	AsyncDNS
	DNS
	Syntax
	Default
	Example

	Threads, Processes and Connections
	BlockingListenSockets
	KeepAliveTimeout
	KernelThreads
	ListenQ
	MaxKeepAliveConnections
	Default

	MaxProcs
	PostThreadsEarly
	RcvBufSize
	RqThrottle
	Default

	RqThrottleMinPerSocket
	SndBufSize
	StackSize
	StrictHttpHeaders
	Syntax
	Default

	TerminateTimeout

	Native Thread Pools
	NativePoolStackSize
	NativePoolMaxThreads
	Default

	NativePoolMinThreads
	Default

	NativePoolQueueSize

	CGI
	CGIExpirationTimeout
	CGIWaitPid (UNIX Only)

	Error Logging and Statistic Collection
	DaemonStats (Unix Only)
	ErrorLog
	Syntax
	Default
	Examples

	LogVerbose
	PidLog
	Syntax
	Default
	Examples

	ACL
	ACLFile
	Syntax
	Example

	Security
	Chroot (Unix only)
	IMPORTANT
	Syntax
	Default
	Examples

	Ciphers
	Syntax

	Security
	Syntax
	Default
	Example

	ServerCert
	Syntax

	ServerKey
	Syntax

	SSLCacheEntries
	Syntax

	SSLClientAuth
	Syntax

	SSLSessionTimeout
	Syntax

	SSL2
	Syntax
	Default
	Example

	SSL3
	Syntax
	Default
	Example

	SSL3Ciphers
	Syntax

	SSL3SessionTimeout
	Syntax

	Chunked Encoding
	UseOutputStreamSize
	Syntax

	flushTimer
	Syntax

	ChunkedRequestBufferSize
	Syntax

	ChunkedRequestTimeout
	Syntax

	Miscellaneous
	Umask (UNIX only)

	MIME Types
	Introduction
	Loading the MIME Types File
	Determining the MIME Type
	How the Type Affects the Response
	What Does the Client Do with the MIME Type?
	Syntax of the MIME Types File
	Sample MIME Types File

	Wildcard Patterns
	Wildcard Patterns
	Wildcard Examples

	Time Formats
	Server-Parsed HTML Tags
	Using Server-Parsed Commands
	config
	include
	echo
	fsize
	flastmod
	exec
	Environment Variables in Commands

	HyperText Transfer Protocol
	Compliance
	Requests
	Request Method, URI, and Protocol Version
	Request Headers
	Request Data

	Responses
	HTTP Protocol Version, Status Code, and Reason Phrase
	Response Headers
	Response Data

	Buffered Streams

	Alphabetical List of NSAPI Functions and Macros
	Alphabetical List of Directives in magnus.conf
	Alphabetical List of Pre-defined SAFs
	Index

