
World Wide Web

ww
Perso

y

ML

Int

r

ne

U

HT

r

na

Ja

Mozill

Publis

at

encryp

SSL
TCP/IP

nal

Prox

merchant system
HT

serve
securityRL

Inte

vigator
community system

hing

Ch
Programmer’s Guide

iPlanet Web Server, Enterprise Edition
Version 4.1

March 2000
comp.sys
directory server

IStore

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxy

a

certificate

Publishing

tion

secure sockets layer

Copyright © 2000 Sun Microsystems, Inc. Some preexisting portions Copyright © 2000 Netscape Communications Corp. All
rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Javascript, iPlanet, and all Sun-, Java-, and iPlanet-based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. Netscape and the
Netscape N logo are registered trademarks of Netscape Communications Corporation in the U.S. and other countries. Other
Netscape logos, product names, and service names are also trademarks of Netscape Communications Corporation, which may
be registered in other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of the product or this document may be reproduced in any form by any means without prior written
authorization of the Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape FastTrack Server, Netscape ONE, SuiteSpot, and the
Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in the United States
and other countries. Other Netscape logos, product names, and service names are also trademarks of Netscape
Communications Corporation, which may be registered in other countries. Other product and brand names are trademarks of
their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

Documentation Team: Jocelyn Becker, Robert Fish, Ann Hillesland, Sanborn Hodgkins, Amanda Lee, Laila Millar, Alan
Morgenegg, and June Smith

Version 4.1

Printed in the United States of America. 00 99 98 5 4 3 2 1

Recycled and Recyclable Paper

Contents

This book was last modified on 3/1/00

About This Book .. 5

Chapter 1 Overview .. 7

API Changes Since iPlanet Web Server 3.x ... 8

API Changes Since iPlanet Web Server 4.0 ... 8

Configuration Files .. 9

iPlanet Web Server 4.1 APIs ... 9

Server-Parsed HTML Tags .. 10

Server-Side JavaScript ... 11

CGI .. 14

Java Servlets and JavaServer Pages (JSP) .. 18

NSAPI .. 21

Web Application Interface (WAI) API ... 23

Access Control API ... 24

Web Publishing API ... 25

API Summary ... 26

Chapter 2 Configuration Files ... 29

magnus.conf .. 30

obj.conf .. 31

mime.types .. 32

Chapter 3 Server-Parsed HTML Tags ... 35

Using Server-Side HTML Commands ... 36

config .. 36

include .. 37

echo .. 37

fsize ... 38

flastmod .. 38
Contents iii

exec ...38

Environment Variables in Server-Side HTML Commands39

Embedding Servlets ...39

Defining Customized Server-Parsed HTML Tags ...40

The Mechanics ..41

Chapter 4 NSAPI Changes ...45

Version 4.0 Changes ..45

Privatization of Some Data Structures ...46

Logging Changes ..46

Cookie Support ...47

New SAF for Security ..47

New SAFs for Adding Headers and Footers ..48

Minor Changes to Init-class SAFs ...48

Relinking 3.x Plugins on the AIX Platform ...48

Version 4.1 Changes ..49

StrictHttpHeaders magnus.conf Variable ...49

Chunked Encoding magnus.conf Variables ..49

find-pathinfo-forward Parameter ...50

nostat Parameter ...50

nocache Parameter ...50

register-http-method SAF ..50

set-default-type SAF ..51

Buffered Streams ...51

Chapter 5 WAI Release Notes ...53

WAI Compatibility Issues ..53

Index ..57
iv Programmer’s Guide to Servlets

About This Book

This book is a starting point for developers who need information about using
the various APIs and programming technologies that are supported by iPlanet™
Web Server, Enterprise Edition 4.1.
This book summarizes each of the APIs and programming technologies, and
tells you where to find more information. In general, each API or programming
technology is documented in a separate programmer’s guide, with the
exception of the API for defining customized server-parsed tags, which is
discussed in Chapter 3, “Server-Parsed HTML Tags” in this book.

This book has the following chapters:

• Chapter 1, “Overview”

This chapter discusses the changes in the APIs that are provided with the
server from version 3.x to 4.1. It also summarizes the various APIs and
programming technologies supported by the server and tells you where to
look for more information.

• Chapter 2, “Configuration Files”

This chapter summarizes the configuration files that the iPlanet Web Server
uses.

• Chapter 3, “Server-Parsed HTML Tags”

This chapter discusses how to use server-parsed tags, lists the standard
ones, and explains how to define your own.

• Chapter 4, “NSAPI Changes”

This chapter discusses the changes to NSAPI in iPlanet Web Server 4.x.
About This Book 5

• Chapter 5, “WAI Release Notes”

This chapter discusses how to use WAI in iPlanet Web Server 4.x.

Note Throughout this manual, all Unix-specific descriptions apply to the Linux
operating system as well, except where Linux is specifically mentioned.
6 Programmer’s Guide

C h a p t e r

1
Overview
iPlanet Web Server 4.1 supports a variety of application programming
interfaces (APIs) and programming technologies that enable you to do the
following:

• generate dynamic content in response to client requests

• modify and extend the behavior of the server

• modify the content stored in the server

This chapter discusses the changes in the APIs that are provided with the server
from version 3.x to 4.1. It also summarizes the various APIs and programming
technologies supported by the server. More information on each API or
programming technology is provided either in a chapter in this book, or in a
separate book.

The sections in this chapter are:

• API Changes Since iPlanet Web Server 3.x

• API Changes Since iPlanet Web Server 4.0

• Configuration Files

• iPlanet Web Server 4.1 APIs

• API Summary
Chapter 1, Overview 7

API Changes Since iPlanet Web Server 3.x
API Changes Since iPlanet Web Server 3.x
• New API for defining customized server-parsed tags as NSAPI plugins has

been added. For more information, see Chapter 3, “Server-Parsed HTML
Tags.”

• Server-side JavaScript includes support for JavaScript 1.4 and the JavaScript
Application Manager has some cosmetic interface changes.

JavaScript 1.4 is discussed in the “New Features in this Release” section of
the “About this book” chapter of the Core JavaScript Reference.

• Server side Java applets (HttpApplets) are not supported. Use Java servlets
instead.

• Agents API is not supported.

• iPlanet Web Server 4.1 does not contain the Visibroker object request
broker. If you want to run WAI or other CORBA/IIOP applications, you
must first install Visibroker 3.3 or higher from Inprise. For information about
Visibroker, see:

http://www.inprise.com/visibroker/

• WAI is provided in iPlanet Web Server 4.1, but is not guaranteed to be
supported in future releases. We recommend that you do not develop new
WAI applications. Before installing and using WAI, you need to separately
install Visibroker 3.3 or higher from Inprise. For information about WAI
update compatibility issues in this release, see Chapter 5, “WAI Release
Notes”.

• NSAPI has some additional functions, as discussed in Chapter 4, “NSAPI
Changes.”

API Changes Since iPlanet Web Server 4.0
• Java Servlets version 2.2.1 and JavaServer Pages 1.1 are supported.

• HTTP/1.1 cookies are supported.

• Descriptions of CGI variables have been added to the “CGI Variables”
section in this chapter.
8 Programmer’s Guide

Configuration Files
• You can invoke servlets as SSI in HTML pages by using the <SERVLET> tag,
as discussed in Chapter 3, “Server-Parsed HTML Tags.”

• NSAPI has some additional functions, as discussed in Chapter 4, “NSAPI
Changes.”

Configuration Files
You can configure the iPlanet Web Server using the Server Manager interface,
or by editing configuration files. The configuration files are in the config
directory in the https-server_id directory in the installation directory. For
example, if iPlanet Web Server is installed on a Windows NT machine in
D:\Netscape\server4\, the configuration files for the server
boots.mcom.com are in:

D:\Netscape\server4\https-boots.mcom.com\config

The main configuration files are magnus.conf, obj.conf, and mime.types,
but there are other configuration files as well. See Chapter 2, “Configuration
Files,” for an overview of these configuration files.

For more detailed information about the files magnus.conf, obj.conf, and
mime.types, see the NSAPI Programmer’s Guide for iPlanet Web Server.

iPlanet Web Server 4.1 APIs
This section summarizes the various APIs and programming technologies
supported by iPlanet Web Server 4.1, discusses how to enable the functionality
in iPlanet Web Server 4.1, and mentions where to get more information about
them.

The main categories of extensions and modifications you can make to the
iPlanet Web Server are:

• Dynamically generating responses (or parts of responses) to requests. The
APIs and programming approaches that fall in this category are:

• Server-Parsed HTML Tags

• Server-Side JavaScript
Chapter 1, Overview 9

iPlanet Web Server 4.1 APIs
• CGI

• Java Servlets and JavaServer Pages (JSP)

• Modifying the behavior of the server itself by implementing server plugins.
Most server plugins are written using Netscape Server API (NSAPI). There
are also specialized APIs for writing server plugins, such as the Access
Control List API (ACLAPI) which is used for controlling access to server
resources.

The APIs for modifying server behavior are:

• NSAPI

• Web Application Interface (WAI) API

• Access Control API

• Modifying the content of the server, by adding, removing, or modifying
resources and directories. To do this, either use remote file manipulation or
the Web Publishing API.

Server-Parsed HTML Tags

iPlanet Web Server 4.1 provides a C API for defining your own server-side tags.
These tags can be used in addition to the standard server-side tags, such as
config, include and so on, in HTML files.

Enabling Server-Parsed Tags

To activate and deactivate the parsing of server-side tags, use the Parse HTML
page in the Programs tab of the Server Manager. This page enables you to
switch off parsing of server-side HTML tags, or enable it with or without also
enabling the exec tag. The page also allows you to specify whether to parse all
files or just those with a .shtml extension.

The directives in obj.conf that enable the parsing of server-side tags are:

Init funcs="shtml_init,shtml_send" shlib="install_dir/bin/https/bin/
Shtml.dll" NativeThread="no" fn="load-modules"

Service fn="shtml_send" type="magnus-internal/parsed-html" method="(GET|HEAD)"
10 Programmer’s Guide

iPlanet Web Server 4.1 APIs
To enable parsing of server-side tags for files with extensions other than
.shtml, add the extension to the appropriate line in the mime.types file. For
example, the following line in mime.types indicates that files with either a
.shtml or .jbhtml extension are parsed for server-side tags.

type=magnus-internal/parsed-html exts=shtml,jbhtml

After making changes to mime.types, restart the iPlanet Web Server to update
its table of MIME type mappings, since the mime.types file is only loaded
when the server is initialized.

For More Information

See Chapter 3, “Server-Parsed HTML Tags,” for more information about defining
and using server-parsed tags.

Server-Side JavaScript

iPlanet Web Server 4.1 supports JavaScript version 1.4.

Using JavaScript, you can create dynamic HTML pages that process user input
and maintain persistent data using special objects, files, and relational
databases. Through JavaScript’s LiveConnect functionality, your applications
can access Java and CORBA distributed-object applications.

LiveConnect allows you to access Java objects from a JavaScript application.
With LiveConnect, you can create an instance of a Java class from within a
JavaScript script. You can also access JavaScript objects from within Java.

Some developers choose to use JavaScript solely on the client (such as a
Netscape browser). Larger-scale applications frequently have more complex
needs, such as communicating with a relational database, providing continuity
of information from one invocation to another of the application, or performing
file manipulations on a server. For these more demanding situations, Netscape
web servers contain server-side JavaScript, which has extra JavaScript objects to
support server-side capabilities.

Some aspects of the core language act differently when run on a server. In
addition, to support the increased performance demands in these situations,
server-side JavaScript is compiled before installation, whereas the runtime
engine compiles each client-side JavaScript script at runtime.
Chapter 1, Overview 11

iPlanet Web Server 4.1 APIs
For information about server-side JavaScript, see the book Server-Side
JavaScript Guide for iPlanet Web Server.

Enabling Server-Side JavaScript

To enable or disable server-side JavaScript, use the Server-Side JavaScript page
in the Programs tab in the Server Manager interface.

When server-side JavaScript is enabled, the obj.conf file has the following
directives:

• In the Init section:

Init objects="d:/netscape/server4/https-boots.mcom.com/
config/jsa.conf" fn="livewireInit"

• In the default object:

NameTrans fn="livewireNameTrans" name="ServerSideJS"

• In a separate named object:

<Object name="ServerSideJS">
Service fn="livewireService"
</Object>

If an administration server password is required to access the Server-Side
Javascript Application Manager, the ServerSideJS object has more
directives.

Compiling Server-Side JavaScript Applications

Before you can deploy a server-side JavaScript application, you must compile it
into a.web file. Several sample JavaScript applications, including the source
files, the .web files, and the make files, are in the directory server-root/
plugins/samples/js. One of the easiest ways to compile a new application is
to copy a make file for an existing application and modify it to suit your needs.

For information about compiling server-side JavaScript Applications, see the
section “Compiling an Application” in Chapter 3, “Mechanics of Developing
JavaScript Applications,” in the book Server-Side JavaScript Guide for iPlanet
Web Server.
12 Programmer’s Guide

iPlanet Web Server 4.1 APIs
Installing Server-Side JavaScript Applications

After compiling the application, use the JavaScript Application Manager to
register it with the iPlanet Web Server.

To access the JavaScript Manager in a browser, open the URL http://
server_name/appmgr/, for example http://poppy.mcom.com/appmgr/.

To access the JavaScript Application Manager from the Server Manager
interface, go to the Server-Side JavaScript page in the Programs tab. At the top
of the page, you see a line such as:

The Server side Javascript Application Manager is at http://
poppy.mcom.com/appmgr/

Click on the location for the application manager. The application manager
opens in another browser window. You can use the application manager to
add JavaScript applications, run them, stop them, start them, and debug them.

For information about using the JavaScript Application Manager, see:

• Chapter 11, “Extending Your Server with Programs,” of the iPlanet Web
Server Administrator’s Guide.

• Chapter 3, “Mechanics of Developing JavaScript Applications,” of the Server-
Side JavaScript Guide for iPlanet Web Server.

For More Information

For information about JavaScript, you can view the following online books:

• JavaScript 1.4 is discussed in the “New Features in this Release” section of
the “About this Book” chapter of the Core JavaScript Reference.

• JavaScript Reference

This book is a reference manual for the JavaScript language, including
objects in the core language and both client-side and server-side extensions.
(Do not use client-side extensions in server-side programs!)

• Server-Side JavaScript Guide for iPlanet Web Server
Chapter 1, Overview 13

iPlanet Web Server 4.1 APIs
This book provides information about JavaScript’s server-side capabilities,
what has been added to core JavaScript to run on the server, and how the
language differs between the client and the server. It also describes the
mechanics of creating a server-side JavaScript application and adding it to
the server.

• Accessing External Databases

For a detailed explanation of interacting with external databases, see
chapters 8, 9, and 10 of Server-Side JavaScript Guide for iPlanet Web Server.

• Additional JavaScript information is available at:

http://www.mozilla.org/js/

CGI

Common Gateway Interface (CGI) programs run on the server and generate a
response to return to the requesting client. CGI programs can be written in
various languages, including C, C++, Java, Perl, and as shell scripts. CGI
programs are invoked through URL invocation.

iPlanet Web Server complies with the version 1.1 CGI specification.

Since the server starts up a process each time the CGI script or program runs,
this is an expensive method of programming the server.

Enabling CGI

iPlanet Web Server provides two ways to identify CGI programs:

• Specifying CGI Directories. The server treats all files in CGI directories as
CGI programs.

• Specifying CGI File Extensions. The server treats all files with the specified
extensions as CGI programs.

Specifying CGI Directories

To specify directories that contain CGI programs (and only CGI programs) use
the CGI Directory page in the Programs tab of the Server Manager. The server
treats all files in these directories as CGI programs.
14 Programmer’s Guide

iPlanet Web Server 4.1 APIs
For each CGI directory, the file obj.conf contains a NameTrans directive that
associates the name cgi with each request for a resource in that directory.
These directives are automatically added to obj.conf when you specify CGI
directories in the Server Manager interface, or you can manually add them to
obj.conf if desired.

For example, the following instruction interprets all requests for resources in
http://server-name/cgi-local as requests to invoke CGI programs in the
directory D:/Netscape/Server4/docs/mycgi.

NameTrans fn="pfx2dir" from="/cgi-local" dir="D:/Netscape/Server4/docs/
mycgi" name="cgi"

The obj.conf file must contain the following named object:

<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi"
</Object>

Do not remove this object from obj.conf. If you do, the server will never
recognize CGI directories, regardless of whether you specify them in the Server
Manager interface or manually add more NameTrans directives to obj.conf.

Specifying CGI File Extensions

Use the CGI File Type page in the Programs tab of the Server Manager to
instruct the server to treat all files with certain extensions as CGI programs,
regardless of which directory they reside in. The default CGI extensions are
.cgi, .bat and.exe.

To change which extensions indicate CGI programs, modify the following line
in mime.types to specify the desired extensions. Be sure to restart the server
after editing mime.types.

type=magnus-internal/cgi exts=cgi,exe,bat

When the server is enabled to treat all files with an appropriate extensions as
CGI programs, the obj.conf file contains the following Service directive:

Service fn="send-cgi" type="magnus-internal/cgi"
Chapter 1, Overview 15

iPlanet Web Server 4.1 APIs
Adding CGI Programs to the Server

To add CGI programs to the iPlanet Web Server, simply do one of the
following:

• Drop the program file in a CGI directory (if there are any).

• Give it a file name that the server recognizes as a CGI program and put it in
any directory at or below the document root (if CGI file type recognition
has been activated).

Windows NT CGI and Shell CGI Programs

For information about installing CGI and shell CGI programs on Windows NT
using the Server Manager interface, see Chapter 11, “Extending Your Server
with Programs,” of the iPlanet Web Server Administrator’s Guide.

CGI Variables

In addition to the standard CGI variables, you can use the iPlanet Web Server
CGI variables in Table 0.1 in CGI programs to access information about the
client certificate if the server is running in secure mode. The CLIENT_CERT and
REVOCATION variables are available only when client certificate based
authentication is enabled.

Table 0.1 CGI Variables

Variable Description

SERVER_URL The URL of the server that the client requested

HTTP_xxx An incoming HTTP request header, where xxx
is the name of the header

HTTPS ON if the server is in secure mode and OFF
otherwise

HTTPS_KEYSIZE The keysize of the SSL handshake (available if
the server is in secure mode)

HTTPS_SECRETKEYSIZE The keysize of the secret part of the SSL
handshake (available if the server is in secure
mode)
16 Programmer’s Guide

iPlanet Web Server 4.1 APIs
HTTPS_SESSIONID The session ID for the connection (available if
the server is in secure mode)

CLIENT_CERT The certificate that the client provided

CLIENT_CERT_SUBJECT_DN The Distinguished Name of the subject of the
client certificate

CLIENT_CERT_SUBJECT_OU The Organization Unit of the subject of the
client certificate

CLIENT_CERT_SUBJECT_O The Organization of the subject of the client
certificate

CLIENT_CERT_SUBJECT_C The Country of the subject of the client
certificate

CLIENT_CERT_SUBJECT_L The Location of the subject of the client
certificate

CLIENT_CERT_SUBJECT_ST The State of the subject of the client certificate

CLIENT_CERT_SUBJECT_E The E-mail of the subject of the client certificate

CLIENT_CERT_SUBJECT_UID The UID part of the CN of the subject of the
client certificate

CLIENT_CERT_ISSUER_DN The Distinguished Name of the issuer of the
client certificate

CLIENT_CERT_ISSUER_OU The Organization Unit of the issuer of the client
certificate

CLIENT_CERT_ISSUER_O The Organization of the issuer of the client
certificate

CLIENT_CERT_ISSUER_C The Country of the issuer of the client certificate

CLIENT_CERT_ISSUER_L The Location of the issuer of the client
certificate

CLIENT_CERT_ISSUER_ST The State of the issuer of the client certificate

CLIENT_CERT_ISSUER_E The E-mail of the issuer of the client certificate

CLIENT_CERT_ISSUER_UID The UID part of the CN of the issuer of the
client certificate

CLIENT_CERT_VALIDITY_START The start date of the certificate

Table 0.1 CGI Variables

Variable Description
Chapter 1, Overview 17

iPlanet Web Server 4.1 APIs
For More Information

A myriad of information about writing CGI programs is available. A good
starting point is “The Common Gateway Interface” at:

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

Java Servlets and JavaServer Pages (JSP)

iPlanet Web Server 4.1 supports Java servlets and JavaServer Pages (JSP). The
server supports Java Servlets API 2.2.1 and JSP API Level 1.1.

Java servlets are server-side Java programs that can be used to generate
dynamic content in response to client requests in much the same way as CGI
programs do. Servlets are invoked through URL invocation.

You create servlets using the Servlets API, which was created by Sun
Microsystems. iPlanet Web Server 4.1 includes all the files necessary for
developing and running Java Servlets. You can compile servlets using any Java
compiler you like, so long as the servlets.jar file is accessible to your Java
compiler. The servlets.jar file is in the server installation directory at:

/bin/https/jar

For information about using the Servlet API, see the Java Servlet API
documentation from Sun Microsystems at:

http://java.sun.com/products/servlet/index.html

CLIENT_CERT_VALIDITY_EXIRES The expiration date of the certificate

CLIENT_CERT_EXTENSION_xxx The certificate extension, where xxx is the name
of the extension

REVOCATION_METHOD The name of the certificate revocation method if
it exists

REVOCATION_STATUS The status of certificate revocation if it exists

Table 0.1 CGI Variables

Variable Description
18 Programmer’s Guide

iPlanet Web Server 4.1 APIs
A JavaServer Page (JSP) is a page much like an HTML page that can be viewed
in a web browser. However, in addition to HTML tags, it can include a set of
JSP tags that extend the ability of the web page designer to incorporate
dynamic content in a page. These tags provide functionality such as displaying
property values and using simple conditionals.

For more information on using JavaServer Pages, see the JavaServer Pages
documentation from Sun Microsystems at:

http://java.sun.com/products/jsp/index.html

Enabling Java Servlets and JavaServer Pages

When you install iPlanet Web Server 4.1, you can choose to install the Java
Runtime Environment (JRE) or you can specify a path to the Java Development
Kit (JDK).

The server can run servlets using the JRE, but it needs the JDK to run JSP. The
JDK is not bundled with the iPlanet Web Server, but you can download it for
free from Sun Microsystems at:

http://java.sun.com/products/jdk/1.2/

iPlanet Web Server 4.1 requires you to use an official version of JDK 1.2. For
details, see the Programmer’s Guide to Servlets for iPlanet Web Server.

Regardless of whether you choose to install the JRE or specify a path to the JDK
during installation, you can tell the iPlanet Web Server to switch to using either
the JRE or JDK at any time by using the “Configure JRE/JDK Paths” page in the
Servlets tab of the Server Manager.

Before the server can serve servlets and JSP, the servlet engine must be
enabled. To enable servlets and JSP, use the Enable/Disable Servlets/JSP page
in the Servlets tab of the Server Manager interface. If servlets are enabled, JSP
can be enabled or disabled. If servlets are disabled, JSP is also disabled.

When servlets are enabled, the obj.conf file contains the following Init
directives. The first one loads the servlets library and makes the servlet-related
functions available to the iPlanet Web Server. The other two directives initialize
the servlet engine. The shlib value shown is for Windows NT.

Init shlib="d:/server_root/bin/https/bin/NSServletPlugin.dll"
funcs="NSServletEarlyInit,NSServletLateInit,NSServletNameTrans,NSServle
tService" shlib_flags="(global|now)" fn="load-modules"

Init EarlyInit="yes" fn="NSServletEarlyInit"
Chapter 1, Overview 19

iPlanet Web Server 4.1 APIs
Init LateInit="yes" fn="NSServletLateInit"

For Unix, the shlib value is as follows:

shlib="server_root/bin/https/lib/libNSServletPlugin.so"

The file obj.conf also has other directives that relate to servlets, and defines
several additional objects for processing requests for servlets.

Adding Servlets and JavaServer Pages to the Server

There are two ways to make a servlet accessible to clients once servlet
activation has been enabled:

• Put the servlet class file in a directory that has been registered with the
iPlanet Web Server as a servlet directory.

Servlets in registered servlet directories are dynamically loaded when
needed. The server monitors the servlet files and automatically reloads them
on the fly as they change. Initially, the iPlanet Web Server has a single
servlet directory, which is server_id/docs/servlet/.

• Define a servlet virtual path translation for the servlet. In this case, the
servlet class file can be located anywhere in the file system or even reside
on a remote machine.

To add a JSP 1.x file to the server, simply give the file a .jsp extension, and
put it on the server in a directory at or below the document root. So long as JSP
is enabled, the iPlanet Web Server treats all files with a .jsp extension as
JavaServer Pages.

To add a JSP 0.92 file to the server, you must place the file in a legacy directory.

Note Do not put JSP files in a registered servlets directory, since the iPlanet Web
Server expects all files in a registered servlet directory to be servlets.

For More Information

For more information about using servlets in iPlanet Web Server 4.1, see the
book Programmer’s Guide to Servlets for iPlanet Web Server.

For more information about using the Servlets API to create servlets, see the
Java Servlet API documentation from Sun Microsystems at:

http://java.sun.com/products/servlet/index.html
20 Programmer’s Guide

iPlanet Web Server 4.1 APIs
For information about creating JSPs, see Sun Microsystem’s JavaServer Pages
web site at:

http://java.sun.com/products/jsp/index.html

NSAPI

Netscape Server Application Programming Interface (NSAPI) is a set of C
functions for implementing extensions to the server. These extensions are
known as server plugins.

Using NSAPI, you can write plugins to extend the functionality of the iPlanet
Web Server. An NSAPI plugin defines one or more Server Application Functions
(SAFs). You can develop SAFs for implementing custom authorization, custom
logging, or for other ways of modifying how the iPlanet Web Server handles
requests.

The file obj.conf contains instructions (known as directives) that tell the
server how to process requests received from clients. Each instruction is
enacted either during server initialization or during a particular stage of the
request-handling process. Each instruction invokes a server application function
(SAF).

For example, the following instruction is invoked when the request method is
GET and the requested resource is of type text/html. This instruction calls the
append-trailer function with a trailer argument of <H4><font
color=green>Served by 4.0</H4>. (The append-trailer function
simply returns the requested resource -- in this case an HTML file -- to the
client, and appends the given trailer to it.)

Service method=GET type="text/html" fn=append-trailer
trailer="<H4>Served by 4.0</H4>"

iPlanet Web Server 4.1 comes with a set of pre-defined SAFs. It also comes with
a library of NSAPI functions for developing your own SAFs to modify the way
that the server handles requests.
Chapter 1, Overview 21

iPlanet Web Server 4.1 APIs
Enabling NSAPI

You don’t enable NSAPI as such. You use it to develop server application
functions (SAFs) to use in the file obj.conf. The file obj.conf is essential for
the operation of the server -- if it does not exist, the server cannot work, since
it has nowhere to look for instructions on how to handle requests.

When defining new SAFs, include the header function nsapi.h (which is in
server_root/plugins/include) to get access to all the NSAPI functions.

Installing NSAPI Plugins (SAFs)

To load new NSAPI plugins containing customized SAFs into the server, add an
Init directive to obj.conf to load the shared library file that defines the new
SAFs. This directive must call the load-modules function, which takes the
following arguments:

• shlib -- the shared library to load.

• funcs -- the functions to be made available to the server.

For example, the following directive loads the shared library d:/netscape/
server4/bin/https/bin/httpdlw.dll, (which enables server-side JavaScript)
and makes the functions livewireInit, livewireNameTrans, and
livewireService available to the server.

Init fn="load-modules" shlib="d:/netscape/server4/bin/https/bin/
httpdlw.dll" funcs="livewireInit,livewireNameTrans,livewireService"

For More Information

For information about changes to NSAPI in iPlanet Web Server 4.1, see
Chapter 4, “NSAPI Changes.”

For information about the following topics, see the NSAPI Programmer’s Guide
for iPlanet Web Server.

• the directives in obj.conf and how they determine how the server handles
requests

• the pre-defined SAFs that ship with iPlanet Web Server 4.1

• the NSAPI functions available for writing custom SAFs

• how to write custom SAFs
22 Programmer’s Guide

iPlanet Web Server 4.1 APIs
• how to load custom SAFs into the iPlanet Web Server by adding an Init
directive to obj.conf that calls load-modules

Web Application Interface (WAI) API

WAI is supported in iPlanet Web Server 4.1, but is not guaranteed to be
supported in future releases.

Using the Web Application Interface (WAI) API, you can write C, C++, and Java
applications that process HTTP requests sent to the server. A WAI application
runs within its own process. The iPlanet Web Server interacts with your
application over Internet Inter-ORB Protocol (IIOP).

WAI is a CORBA-based programming interface. WAI defines object interfaces to
the HTTP request/response data and to server information. Using WAI, you can
write a web application in C, C++, or Java that accepts an HTTP request from a
client, processes it, and returns a response to the client. You can also write your
own server plugins for processing HTTP requests.

For more information about writing applications in WAI, see the online manual
Writing Web Applications with WAI.

Enabling WAI

Before installing the WAI component of your iPlanet Web Server 4.1, you need
to install Visibroker 3.3 or higher from Inprise. For information about
Visibroker, see:

http://www.inprise.com/visibroker/

After installing Visibroker, install the WAI component of iPlanet Web Server 4.1.
After WAI is installed, you then need to enable WAI. Do this by using the WAI
Management page in the Programs tab of the Server Manager. (If WAI is not
installed, this button does not appear.)

Installing WAI Applications

You install a WAI application in the same way that you install other NSAPI
plugins. The application must contain an initialization function that registers the
application. You load it into the server in the usual manner, by adding the
following directives to obj.conf:
Chapter 1, Overview 23

iPlanet Web Server 4.1 APIs
• An Init directive that invokes the load-modules function to load the
shared library.

• An Init directive that calls the initialization function.

Start your application on the host machine that runs the iPlanet Web Server.
Make sure that when the initialization function registers the application, it
specifies the host name and port of the iPlanet Web Server.

Note that it is possible (but not recommended) to run WAI applications on
other machines in the local network. For a complete explanation of the security
concerns and instructions for configuring the server to recognize WAI
applications on other machines, see Chapter 8, “Security Guidelines for Using
WAI,” in the online manual Writing Web Applications with WAI.

For More Information

For more information about Visibroker from Inprise, see:

http://www.inprise.com/visibroker/

For more information about writing WAI applications, see:

http://www.iplanet.com/docs/

Access Control API

The Access Control API is a C API that lets you programmatically control who
has access to what on the iPlanet Web Server.

Access control lists (ACLs) determine who has what kind of access privileges to
which resources on the server. Each ACL contains a list of access control
entries. The following access control entry, for example, says that all access is
denied to everyone for any resource that contains the substring private.

acl "*private*";
deny (all)
(user = "anyone");

To create access control lists, use the Restrict Access page in the Programs tab
of the Server Manager interface. You can also edit the files that contain the
ACLs used by the server.
24 Programmer’s Guide

iPlanet Web Server 4.1 APIs
Access control lists reside in the directory server_installation_dir/
httpacl. The server uses the default settings in the file server_root/
httpacl/generated.https-serverid.acl. There is also a file called
genwork.https-serverid.acl that is a working copy the server uses until
you save and apply your changes when working with the user interface. When
editing the ACL file, you might want to work in the genwork file and then use
the Server Manager to load and apply the changes.

With the Access Control API, you can manipulate access control lists (ACLs),
read and write ACL files, and evaluate and test access to resources on the
server. You can also define your own attributes for authentication. For
example, you might want to authenticate users based on email address or on
the URL that referred them to the resource. You can also authenticate the client
based on your own authentication methods and databases.

Registering New Authentication Services

To tell the server to use your attributes for authentication, you need to define
your own Loadable Authentication Service (LAS), which is an NSAPI plugin.
You load it into the server in the usual manner by adding the following
directives to obj.conf:

• An Init directive that invokes the load-modules function to load the
shared library.

• An Init directive that calls the initialization function.

For More Information

For information about using the ACL API, see the Access Control Programmer’s
Guide. For information about the syntax for editing ACL files, see Appendix A
in the same book.

Web Publishing API

The Web Publishing API provides a set of Java classes that allow client Java
applications and applets to manipulate resources, such as files and directories,
on the server. With these classes, the client application can perform standard
file system actions such as creating, deleting, and copying resources.
Chapter 1, Overview 25

API Summary
In addition, you can associate meta-information (attributes) with a resource to
track arbitrary information about the resource, such as associating a project or a
list of reviewers with the resource. You can use the locking facility to ensure
that two users don’t edit the same resource at the same time. You can also
choose to track the history of a component resource by maintaining separate
versions of it -- this is known as version control.

Enabling Web Publishing

To enable Web Publishing, use the Web Publishing State page in the Web
Publishing tab of the Server Manager interface.

For More Information

For more information about using the Web Publishing Client API, see the Web
Publishing Client API Guide.

API Summary
The following table lists the APIs available in iPlanet Web Server 4.1.

Table 0.2 APIs available in iPlanet Web Server 4.1

API/Interface/Protocol Language Documentation

Interfaces for Generating Dynamic Content

Custom Server-Parsed
HTML Tags

C Chapter 3, “Server-Parsed
HTML Tags.”

Server-Side JavaScript
(LiveWire) and
LiveConnect

JavaScript JavaScript Reference and
Server-Side JavaScript
Guide for iPlanet Web
Server

Java Servlets Java Programmer’s Guide to
Servlets for iPlanet Web
Server

JavaServer Pages HTML with additional JSP
tags

Programmer’s Guide to
Servlets for iPlanet Web
Server
26 Programmer’s Guide

API Summary
CGI (one process per
request)

C, C++, Perl, shell, and
other languages

The Common Gateway
Interface

APIs for Writing Server Plugins

NSAPI (in-process shared
object/DLL)

C, C++ NSAPI Programmer’s
Guide for iPlanet Web
Server

WAI (separate process) C, C++, Java Writing Web Applications
with WAI

Access Control API C, C++ Access Control
Programmer’s Guide

API For Modifying Server Resources

Web Publishing Interface Java Web Publishing Client API
Guide

Table 0.2 APIs available in iPlanet Web Server 4.1

API/Interface/Protocol Language Documentation
Chapter 1, Overview 27

API Summary
28 Programmer’s Guide

C h a p t e r

2
Configuration Files
This chapter gives an overview of the iPlanet Web Server’s three main
configuration files. The sections are:

• magnus.conf

• obj.conf

• mime.types

For more detailed information about the files magnus.conf , obj.conf , and
mime.types , see the NSAPI Programmer’s Guide for iPlanet Web Server.

You can configure the iPlanet Web Server using the Server Manager interface,
or by editing configuration files. The configuration files live in the config
directory in the https-server_id directory in the installation directory. For
example, if iPlanet Web Server is installed on a Windows NT machine in
D:\Netscape\server4\, the configuration files for the server
boots.mcom.com are in:

D:\Netscape\server4\https-boots.mcom.com\config

Briefly, the configuration files are:

• magnus.conf

Defines global settings for the server, such as the server name. When the
server is initialized, it executes the directives in magnus.conf .

• obj.conf
Chapter 2, Configuration Files 29

magnus.conf
Provides instructions to the server about how to handle requests from
clients such as browser. Whenever you make changes to the server through
the Server Manager interface, the system automatically edits the obj.conf
file. You can also manually edit obj.conf to modify the server behavior.

• mime.types

Defines the MIME types supported by the server. When the server starts up,
it loads this file and creates a table that maps file extensions to MIME types,
as defined in the file. For example, the extension .html is always mapped
to the content type text/HTML .

• Other configuration files.

Depending on which features are enabled in the server, the config
directory contains other configuration files, such as:

servlets.properties -- defines the servlet properties.

rules.properties -- defines virtual paths for servlets.

contexts.properties -- defines the context properties.

jvm12.conf -- defines Java settings, such as classpaths.

webpub.conf -- defines settings for Web Publishing.

acl.conf -- defines access control lists.

jsa.conf -- defines server side JavaScript configuration.

The rest of this section discusses the three main configuration files.

magnus.conf
The file magnus.conf defines settings that the server uses for initialization.
After the server starts up, it does not look in magnus.conf again. This file
contains directives that each consist of a variable name and the setting for that
variable.

An example of magnus.conf is:

#ServerRoot D:/Netscape/Server4/https-boots.mcom.com
ServerID https-boots.mcom.com
ServerName boots.mcom.com
Port 80
ExtraPath D:/Netscape/Server4/bin/https/jdk/jre/bin; D:/Netscape/
Server4/bin/https/jdk/jre/bin/classic;D:/Netscape/Server4/wai/bin
30 Programmer’s Guide

obj.conf
LoadObjects obj.conf
RootObject default
ErrorLog D:/Netscape/Server4/https-boots.mcom.com/logs/errors
MtaHost name-of-mail-server
DNS off
Security off
Ciphers +rc4,+rc4export,+rc2,+rc2export,+des,+desede3
SSL3Ciphers +rsa_rc4_128_md5,+rsa_3des_sha,+rsa_des_sha,
+rsa_rc4_40_md5,+rsa_rc2_40_md5,-rsa_null_md5
ACLFile D:/Netscape/Server4/httpacl/generated.https-boots.mcom.com.acl
ClientLanguage en
AdminLanguage en
DefaultLanguage en
AcceptLanguage off
RqThrottle 512

For a complete list of the directives in magnus.conf, see the magnus.conf
appendix in the NSAPI Programmer’s Guide for iPlanet Web Server.

obj.conf
The obj.conf file contains additional initialization instructions as well as
instructions for the server about how to process requests from clients.

The normal procedure for modifying the iPlanet Web Server is to use the Server
Manager interface. When you use the Server Manager interface to make
changes to the iPlanet Web Server, the system automatically updates the
obj.conf file.

You can also manually edit obj.conf if desired to add, remove, or modify
directives. But if you do so, be sure to load obj.conf into the Server Manager
before using the Server Manager to make further changes, otherwise Server
Manager overwrites your manual changes.

Each instruction, or directive, in obj.conf, applies during initialization or
during a particular stage of the request handling process. The stages are:

1. Init -- instructions for initialization. These are performed after the server has
set the variables defined in magnus.conf.

2. AuthTrans -- authorization translation.

3. NameTrans -- translates the logical URI into a local file system path.
Chapter 2, Configuration Files 31

mime.types
4. PathCheck -- checks the local file system for validity and access
permissions.

5. ObjectType -- determines the MIME type of the requested resource.

6. Service -- generates the response and returns it to the client.

7. AddLog -- adds entries to the log file if appropriate.

8. Error -- updates the error log if an error occurred.

Each directive in obj.conf invokes a server application function (SAF) and
passes arguments to it. For example, the following directive is invoked during
the Service stage if the request method is GET and the requested content is of
the type text/html. This directive sets the value of the trailer argument to
"<H4>Served by 4.0</H4>" and passes it to
the append-trailer SAF.

Service fn=append-trailer method=GET type="text/html"
trailer="<H4>Served by 4.1</H4>"

For more details about obj.conf, about the different stages in the request
handling process, and for a list of the pre-defined SAFs you can use in
directives, see the NSAPI Programmer’s Guide for iPlanet Web Server.

mime.types
When a client, such as a browser, sends a request to the iPlanet Web Server,
the MIME type determines the kind of content being requested. The MIME type
is usually indicated by the extension of the requested resource. For example,
.gif implies the client wants a GIF image, and .html implies the client wants
an HTML file.

MIME stands for Multipurpose Internet Mail Extension (or Encoding).

The file mime.types maps extensions to MIME types. When the iPlanet Web
Server starts up, it loads mime.types and uses it to create a table of mappings
between MIME types and extensions.

The ObjectType directives in the file obj.conf give the server instructions on
how to determine the MIME type. The catch-all ObjectType directive is:

ObjectType fn="type-by-extension"
32 Programmer’s Guide

mime.types
The type-by-extension function looks up the MIME type according to the
requested resource’s extension.

The ObjectType directives set the type parameter. This parameter helps the
server determine which Service directive to use to generate the response to
send back to the client.

For example, if the request is http://boots/docs/servlet/jos.jsp, this is
how the server decides which Service directive to use:

• obj.conf contains the directive:

ObjectType fn="type-by-extension"

This tells the server to look up the type in its MIME types table, which is
based on the file mime.types.

• In the MIME types table (which is based on mime.types), the server finds:

type=magnus-internal/jsp exts=jsp

This tells the server that the type is magnus-internal/jsp because the
extension is jsp.

• obj.conf also contains the directive:

Service fn="NSServletService" type="magnus-internal/jsp"

This tells the server to use the function NSServletService to generate the
response.

The server also puts the MIME type in the header information to return to the
client so that the client knows what kind of content to receive.

An example of mime.types is:

type=text/html exts=htm,html
type=text/plain exts=txt
type=text/richtext exts=rtx
type=text/tab-separated-values exts=ts
type=text/x-setext exts=etx
type=text/x-speech exts=talk

type=video/isivideo exts=fvi
type=video/mpeg exts=mpeg,mpg,mpe,mpv,vbs,mpegv
type=video/x-mpeg2 exts=mpv2,mp2v
type=video/msvideo exts=avi
type=video/quicktime exts=qt,mov,moov
type=video/vivo exts=viv,vivo
Chapter 2, Configuration Files 33

mime.types
type=video/wavelet exts=wv

#type=video/x-msvideo exts=avi
type=video/x-sgi-movie exts=movie
type=x-world/x-svr exts=svr
type=x-world/x-vrml exts=wrl
type=x-world/x-vrt exts=vrt
type=x-conference/x-cooltalk exts=ice

enc=x-gzip exts=gz
enc=x-compress exts=z
enc=x-uuencode exts=uu,uue

type=magnus-internal/imagemap exts=map
type=magnus-internal/parsed-html exts=shtml
type=magnus-internal/cgi exts=cgi,exe,bat

type=magnus-internal/jsp exts=jsp
type=application/x-x509-ca-cert exts=cacert
type=application/x-x509-server-cert exts=scert
type=application/x-x509-user-cert exts=ucert
type=application/x-x509-email-cert exts=ecert

For more details about the MIME types file and how the server uses it, see the
MIME types appendix in the NSAPI Programmer’s Guide for iPlanet Web Server.
34 Programmer’s Guide

C h a p t e r

3
Server-Parsed HTML Tags
HTML files can contain tags that are executed on the server. In addition to
supporting the standard server-side tags, iPlanet Web Server 4.1 allows you to
embed servlets and define your own server-side tags.

This chapter has the following sections:

• Using Server-Side HTML Commands

• Embedding Servlets

• Defining Customized Server-Parsed HTML Tags

Note: The server parses server-side tags only if server-side parsing has been
activated. Use the Parse HTML page in the Content Management tab of the
Server Manager interface to enable or disable the parsing of server-side tags.

When you activate parsing, you need to be sure that the following directives
are added to your obj.conf file (note that native threads are turned off):

Init funcs="shtml_init,shtml_send" shlib="install_dir/bin/https/bin/
Shtml.dll" NativeThread="no" fn="load-modules"

Note that you must set NativeThread="no" for 4.1 iPlanet Web Servers. In
addition, these functions now originate from Shtml.dll (or libShtml.so on
Unix), which is located in install_dir/bin/https/bin for Windows NT
(and install_dir/bin/https/lib for Unix).
Chapter 3, Server-Parsed HTML Tags 35

Using Server-Side HTML Commands
Using Server-Side HTML Commands
This section describes the HTML commands for including server-parsed tags in
HTML files. These commands are embedded into HTML files, which are
processed by the built-in SAF parse-html.

The server replaces each command with data determined by the command and
its attributes.

The format for a command is:

<!--#command attribute1 attribute2 ... -->

The format for each attribute is a name-value pair such as:

name="value"

Commands and attribute names should be in lower case.

The commands are “hidden” within HTML comments so they are ignored if not
parsed by the server. The standard server-side commands are:
• config

• include

• echo

• fsize

• flastmod

• exec

config

The config command initializes the format for other commands.

• The errmsg attribute defines a message sent to the client when an error
occurs while parsing the file. This error is also logged in the error log file.

• The timefmt attribute determines the format of the date for the flastmod
command. It uses the same format characters as the util_strftime
function. The default time format is: "%A, %d-%b-%y %T".

Refer to the Time Formats appendix in the NSAPI Programmer’s Guide for
iPlanet Web Server for details about time formats.
36 Programmer’s Guide

Using Server-Side HTML Commands
• The sizefmt attribute determines the format of the file size for the fsize
command. It can have one of these values:

• bytes to report file size as a whole number in the format 12,345,678.

• abbrev (the default) to report file size as a number of KB or MB.

Example:

<!--#config timefmt="%r %a %b %e, %Y" sizefmt="abbrev"-->

This sets the date format to a value such as 08:23:15 AM Wed Apr 15, 1996, and
the file size format to the number of KB or MB of characters used by the file.

include

The include command inserts a file into the parsed file. You can nest files by
including another parsed file, which then includes another file, and so on. The
client requesting the parsed document must also have access to the included
file if your server uses access control for the directories where they reside.

In iPlanet Web Server 4.1, you can use the include command with the
virtual attribute to include a CGI program file. You must also use an exec
command to execute the CGI program.

• The virtual attribute is the URI of a file on the server.

• The file attribute is a relative path name from the current directory. It
cannot contain elements such as ../ and it cannot be an absolute path.

Example:

<!--#include file="bottle.gif"-->

echo

The echo command inserts the value of an environment variable. The var
attribute specifies the environment variable to insert. If the variable is not
found, “(none)” is inserted. For a list of environment variables, see the section
“Environment Variables in Server-Side HTML Commands” on page 39.

Example:
Chapter 3, Server-Parsed HTML Tags 37

Using Server-Side HTML Commands
<!--#echo var="DATE_GMT"-->

fsize

The fsize command sends the size of a file. The attributes are the same as
those for the include command (virtual and file). The file size format is
determined by the sizefmt attribute in the config command.

Example:

<!--#fsize file="bottle.gif"-->

flastmod

The flastmod command prints the date a file was last modified. The attributes
are the same as those for the include command (virtual and file). The
date format is determined by the timefmt attribute in the config command.

Example:

<!--#flastmod file="bottle.gif"-->

exec

The exec command runs a shell command or CGI program.

• The cmd attribute (Unix only) runs a command using /bin/sh. You may
include any special environment variables in the command.

• The cgi attribute runs a CGI program and includes its output in the parsed
file.

Example:

<!--#exec cgi="workit.pl"-->
38 Programmer’s Guide

Embedding Servlets
Environment Variables in Server-Side
HTML Commands

In addition to the normal set of environment variables used in CGI, you may
include the following variables in your parsed commands:

• DOCUMENT_NAME

is the file name of the parsed file.

• DOCUMENT_URI

is the virtual path to the parsed file (for example, /shtml/test.shtml).

• QUERY_STRING_UNESCAPED

is the unescaped version of any search query the client sent with all shell-
special characters escaped with the \ character.

• DATE_LOCAL

is the current date and local time.

• DATE_GMT

is the current date and time expressed in Greenwich Mean Time.

• LAST_MODIFIED

is the date the file was last modified.

Embedding Servlets
iPlanet Web Server 4.1 supports the <SERVLET> tag as defined by Java Web
Server. This tag allows you to embed servlet output in an HTML file. No
configuration changes are necessary to enable this behavior. If SSI and servlets
are both enabled, the server recognizes the <SERVLET> tag.

The <SERVLET> tag syntax is slightly different from that of other SSI commands;
it resembles the <APPLET> tag syntax:

<servlet name=name code=classfile codebase=path iParam1=v1 iParam2=v2>

<param name=param1 value=v3>

<param name=param2 value=v4>
Chapter 3, Server-Parsed HTML Tags 39

Defining Customized Server-Parsed HTML Tags
.

.

</servlet>

The code parameter, which specifies the .class file for the servlet, is always
required. The .class extension is optional. The codebase parameter is
required if the servlet is not defined in the servlets.properties file and the
.class file is not in the same directory as the HTML file containing the
<SERVLET> tag. The name parameter is required if the servlet is defined in the
servlets.properties file, and must match the servlet name defined in that
file.

For more information about creating servlets, see the Programmer’s Guide to
Servlets in iPlanet Web Server.

Defining Customized Server-Parsed HTML
Tags

The parsing of server-side tags in .shtml files in iPlanet Web Server 4.1 has
been substantially improved over previous releases of iPlanet Web Server. First,
the performance of handling server-side tags has been significantly sped up.
Secondly, users can now define their own server-side tags.

For example, you could define the tag <PRICE> to invokes a function that
calculates and displays the price of a product. Then in your .shtml file you
could have code such as:

<H2>Product Prices</H2>

Oak Table: <PRICE product="oaktable">
Pine Bench: <PRICE product="pinebench">
Patio Chair: <PRICE product="patiochair">

When the browser displays this code, each occurrence of the <PRICE> tag calls
the function that is associated with that tag, and returns the price of the relevant
product. The result in the browser might look like this:

Product Prices

• Oak Table: $600
40 Programmer’s Guide

Defining Customized Server-Parsed HTML Tags
• Pine Bench: $400

• Patio Chair: $115

The Mechanics

The steps for defining a customized server-parsed tag are:

1. Define the Functions that Implement the Tag.

You must define the tag execution function, and you can optionally also
define other functions that are called on tag loading and unloading and on
page loading and unloading.

2. Write an Initialization Function to Register the New Tag.

Write an initialization function that registers the tag using the
shtml_add_tag function.

3. Load the New Tag into the Server.

Define the Functions that Implement the Tag

Define the functions that implement the tags in C, using NSAPI.

• Include the header shtml_public.h, which is in the directory
install_dir/plugins/include/shtml.

• Link against the shtml shared library. On Windows NT, shtml.dll is in
install_dir/bin/https/bin. On Unix platforms, libshtml.so or .sl
is in install_dir/bin/https/lib.

ShtmlTagExecuteFunc is the actual tag handler. It gets called with the usual
NSAPI pblock, Session, and Request variables. In addition, it also gets passed the
TagUserData created from the result of executing the tag loading and page
loading functions (if defined) for that tag.

The signature for the tag execution function is:

typedef int (*ShtmlTagExecuteFunc)(pblock*, Session*, Request*,
TagUserData, TagUserData);
Chapter 3, Server-Parsed HTML Tags 41

Defining Customized Server-Parsed HTML Tags
Write the body of the tag execution function to generate the output to replace
the tag in the .shtml page. Do this in the usual NSAPI way, using the
net_write NSAPI function, which writes a specified number of bytes to a
specified socket from a specified buffer.

For more information about writing NSAPI plugins, see Chapter 4, “Creating
Custom SAFs,” in the NSAPI Programmer’s Guide for iPlanet Web Server.

For more information about net_write and other NSAPI functions, see Chapter
5, “NSAPI Function Reference,” of the NSAPI Programmer’s Guide for iPlanet
Web Server.

The tag execution function must return an int that indicates whether the server
should proceed to the next instruction in obj.conf or not, which is one of:

• REQ_PROCEED -- the execution was successful.

• REQ_NOACTION -- nothing happened.

• REQ_ABORTED -- an error occurred.

• REQ_EXIT -- the connection was lost.

The other functions you can define for your tag are:

• ShtmlTagInstanceLoad

This is called when a page containing the tag is parsed. It is not called if the
page is retrieved from the browser’s cache. It basically serves as a
constructor, the result of which is cached and is passed into
ShtmlTagExecuteFunc whenever the execution function is called.

• ShtmlTagInstanceUnload

This is basically a destructor for cleaning up whatever was created in the
ShtmlTagInstanceLoad function. It gets passed the result that was
originally returned from the ShtmlTagInstanceLoad function.

• ShtmlTagPageLoadFunc

This is called when a page containing the tag is executed, regardless of
whether the page is still in the browser’s cache or not. This provides a way
to make information persistent between occurrences of the same tag on the
same page.

• ShtmlTagPageUnLoadFn
42 Programmer’s Guide

Defining Customized Server-Parsed HTML Tags
This is called after a page containing the tag has executed. It provides a way
to clean up any allocations done in a ShtmlTagPageLoadFunc and hence
gets passed the result returned from the ShtmlTagPageLoadFunc.

The signatures for these functions are:

#define TagUserData void*

typedef TagUserData (*ShtmlTagInstanceLoad)(
const char* tag, pblock*, const char*, size_t);

typedef void (*ShtmlTagInstanceUnload)(TagUserData);

typedef int (*ShtmlTagExecuteFunc)(
pblock*, Session*, Request*, TagUserData, TagUserData);

typedef TagUserData (*ShtmlTagPageLoadFunc)(
pblock* pb, Session*, Request*);

typedef void (*ShtmlTagPageUnLoadFunc)(TagUserData);

Write an Initialization Function to Register the New
Tag

In the initialization function for the shared library that defines the new tag,
register the tag using the function shtml_add_tag. The signature is:

NSAPI_PUBLIC int shtml_add_tag (
const char* tag,
ShtmlTagInstanceLoad ctor,
ShtmlTagInstanceUnload dtor,
ShtmlTagExecuteFunc execFn,
ShtmlTagPageLoadFunc pageLoadFn,
ShtmlTagPageUnLoadFunc pageUnLoadFn);

Any of these arguments can be NULL except for the tag and execFn.

Load the New Tag into the Server

After creating the shared library that defines the new tag, you load the library
into the iPlanet Web Server in the usual way for NSAPI plugins. That is, add the
following directives to the configuration file obj.conf:

1. Add an Init directive whose fn parameter is load-modules and whose
shlib parameter is the shared library to load.

2. Add another Init directive whose fn parameter is the initialization function
in the shared library that uses shtml_add_tag to register the tag.
Chapter 3, Server-Parsed HTML Tags 43

Defining Customized Server-Parsed HTML Tags
44 Programmer’s Guide

C h a p t e r

4
NSAPI Changes
This chapter lists the changes to NSAPI in iPlanet Web Server versions 4.0 and
4.1. The sections are as follows:

• Version 4.0 Changes

• Version 4.1 Changes

Version 4.0 Changes
This section lists the changes to NSAPI in iPlanet Web Server version 4.0. These
changes are:

• Privatization of Some Data Structures

• Logging Changes

• Cookie Support

• New SAF for Security

• New SAFs for Adding Headers and Footers

• Minor Changes to Init-class SAFs

• Relinking 3.x Plugins on the AIX Platform
Chapter 4, NSAPI Changes 45

Version 4.0 Changes
Privatization of Some Data Structures

In iPlanet Web Server 4.1, some data structures have been moved from
nsapi.h to nsapi_pvt.h. The data structures in nsapi_pvt.h are now
considered to be private data structures, and you should not write code that
accesses them directly. Instead, use accessor functions. We expect that very few
people have written plugins that access these data structures directly, so this
change should have very little impact on existing customer-defined plugins.
Look in nsapi_pvt.h to see which data structures have been removed from
the public domain and to see the accessor functions you can use to access them
from now on.

Plugins written for server version 3.x that access contents of data structures
defined in nsapi_pvt.h will not be source compatible with iPlanet Web Server
4.1, that is, it will be necessary to #include "nsapi_pvt.h" in order to build
such plugins from source. There is also a small chance that these programs will
not be binary compatible with iPlanet Web Server 4.1, because some of the
data structures in nsapi_pvt.h have changed size. In particular, the
directive structure is larger, which means that a plugin that indexes through
the directives in a dtable will not work without being rebuilt (with
nsapi_pvt.h included).

We hope that the majority of plugins do not reference the internals of data
structures in nsapi_pvt.h, and therefore that most plugins will be both binary
and source compatible with iPlanet Web Server 4.1.

Logging Changes

The following API changes support the logging modifications in iPlanet Web
Server 4.0:

• New Init-class SAF, flex-rotate-init, lets you initialize log rotation for
logs that use the flexible format.

For more information, see the discussion of flex-rotate-init in Chapter
3, “Predefined SAFs and the Request Handling Process,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

• New flexlog token Req->headers.cookie.name logs the value of a
cookie variable name if it is present in the request’s headers and “-”
otherwise.
46 Programmer’s Guide

Version 4.0 Changes
For more information, see the discussion of flex-init in Chapter 3,
“Predefined SAFs and the Request Handling Process,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

• New relaxed parameter to the Init-class SAF flex-init allows you to
specify whether logging uses relaxed mode or not. Also, the format
parameter for flex-init now lets you log the values of named cookies.

When logging uses relaxed mode, it skips the logging of any variable that
would normally block cache acceleration when processing requests for
static files.

For more information, see the discussion of flex-init in Chapter 3,
“Predefined SAFs and the Request Handling Process,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

Cookie Support

• New util_cookie_find function finds a specific cookie in a cookie string
and returns its value.

For more information, see the discussion of util_cookie_find in Chapter
5, “NSAPI Function Reference,” in the NSAPI Programmer’s Guide for
iPlanet Web Server.

New SAF for Security

• New PathCheck-class function ssl-check helps enforce keysize restriction
for cipher settings.

For more information, see the discussion of ssl-check in Chapter 3,
“Predefined SAFs and the Request Handling Process” in the NSAPI
Programmer’s Guide for iPlanet Web Server.
Chapter 4, NSAPI Changes 47

Version 4.0 Changes
New SAFs for Adding Headers and
Footers

• New Service-class SAFs, add-header and add-footer, allow you to
specify file names or URLs that provide a header or footer for a page being
returned to the requesting client.

For more information, see the discussion of add-header and add-footer
in Chapter 3, “Predefined SAFs and the Request Handling Process,” in the
NSAPI Programmer’s Guide for iPlanet Web Server.

Minor Changes to Init-class SAFs

• Minor changes to the parameters for the Init-class SAF cache-init.

For more information, see the discussion of cache-init in Chapter 3,
“Predefined SAFs and the Request Handling Process,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

• Minor changes to the parameters for the Init-class SAF cindex-init.

For more information, see the discussion of cache-init in Chapter 3,
“Predefined SAFs and the Request Handling Process,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

Relinking 3.x Plugins on the AIX
Platform

• For AIX only, plugins built for 3.x versions of the server must be relinked to
work with 4.x versions.

For more information, see the discussion of compiling and linking in
Chapter 4, “Creating Custom SAFs,” in the NSAPI Programmer’s Guide for
iPlanet Web Server.
48 Programmer’s Guide

Version 4.1 Changes
Version 4.1 Changes
This section lists the changes to NSAPI in iPlanet Web Server version 4.1. These
changes are:

• StrictHttpHeaders magnus.conf Variable

• Chunked Encoding magnus.conf Variables

• find-pathinfo-forward Parameter

• nostat Parameter

• nocache Parameter

• register-http-method SAF

• set-default-type SAF

• Buffered Streams

StrictHttpHeaders magnus.conf
Variable

• New StrictHttpHeaders directive in the magnus.conf file controls strict
HTTP header checking.

For more information, see the discussion of the StrictHttpHeaders
directive in Appendix B, “Variables in magnus.conf,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

Chunked Encoding magnus.conf
Variables

• New UseOutputStreamSize, flushTimer, ChunkedRequestBufferSize,
and ChunkedRequestTimeout directives in the magnus.conf file control
chunked encoding and buffered streams.

For more information, see the discussion of the Chunked Encoding
directives in Appendix B, “Variables in magnus.conf,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.
Chapter 4, NSAPI Changes 49

Version 4.1 Changes
find-pathinfo-forward Parameter

• New find-pathinfo-forward parameter (for the PathCheck function
find-pathinfo and the NameTrans functions pfx2dir and assign-name)
makes the server look for the PATHINFO forward in the path right after the
ntrans-base instead of backward from the end of path.

For more information, see the descriptions of find-pathinfo, pfx2dir,
and assign-name in Chapter 3, “Predefined SAFs and the Request Handling
Process,” in the NSAPI Programmer’s Guide for iPlanet Web Server.

nostat Parameter

• New nostat parameter for the NameTrans function assign-name prevents
the server from performing a stat on a specified URL whenever possible.

For more information, see the discussion of assign-name in Chapter 3,
“Predefined SAFs and the Request Handling Process,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

nocache Parameter

• New nocache parameter for the Service function send-file prevents the
server from caching responses to static file requests.

For more information, see the discussion of send-file in Chapter 3,
“Predefined SAFs and the Request Handling Process,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

register-http-method SAF

• New Init function register-http-method lets you extend the HTTP
protocol by registering new HTTP methods.

For more information, see the discussion of register-http-method in
Chapter 3, “Predefined SAFs and the Request Handling Process,” in the
NSAPI Programmer’s Guide for iPlanet Web Server.
50 Programmer’s Guide

Version 4.1 Changes
set-default-type SAF

• New ObjectType function set-default-type allows you to define a
default charset, content-encoding, and content-language for the
response being sent back to the client.

For more information, see the discussion of set-default-type in Chapter
3, “Predefined SAFs and the Request Handling Process,” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

Buffered Streams

• Buffered streams have been implemented to improve the efficiency of
network I/O (for example the exchange of HTTP requests and responses)
especially for dynamic content generation. Buffered streams are
implemented in iPlanet Web Server 4.1 as transparent NSPR I/O layers,
which means even existing NSAPI modules can use them without any
change. Support for buffered streams is part of HTTP 1.1 compliance.

For more information, see the discussion of buffered streams in Appendix
G, “HyperText Transfer Protocol,” in the NSAPI Programmer’s Guide for
iPlanet Web Server.
Chapter 4, NSAPI Changes 51

Version 4.1 Changes
52 Programmer’s Guide

C h a p t e r

5
WAI Release Notes
Web Application Interface (WAI) is available in iPlanet Web Server 4.1, but is
not guaranteed to be available in future releases. We recommend that you do
not develop new WAI applications, instead use servlets.

For more information about using the WAI API, see Writing Web Applications
with WAI at:

http://www.iplanet.com/docs/

Before installing the WAI component of your iPlanet Web Server 4.1, you need
to install Visibroker 3.3 or higher from Inprise. For information about
Visibroker, see:

http://www.inprise.com/visibroker/

After installing Visibroker, install the WAI component of iPlanet Web Server
4.1. After WAI is installed, you then need to enable WAI. Do this by using the
WAI Management page in the Programs tab of the Server Manager. (If WAI is
not installed, this button does not appear.)

WAI Compatibility Issues
The main points to be aware of are:

• OSAGENT Registration is Disabled
Chapter 5, WAI Release Notes 53

WAI Compatibility Issues
• Backward Compatibility Issues

• Different Signature for ORB.init

• Other Java Compatibility Issues

OSAGENT Registration is Disabled

OSAGENT is not started by default in iPlanet Web Server 4.1 since the server
does not need it. Therefore, WAI applications need to specify a command line
option to disable OSAGENT registration. If a WAI application starts without
using the command-line option, it tries to register itself with the OSAGENT
(which is not running) and fails.

You can always start OSAGENT manually, in which case you do not need to
specify the command-line option to disable registration. You can find more
information about OSAGENT in the Visigenic documents.

For Java WAI applications, use the following command to disable OSAGENT
registration:

-ORBdisableLocator=true

For example:

java -DORBdisableLocator=true WASP

For C++ WAI applications, use:

-ORBagent 0

For example:

WASP.EXE -ORBagent 0

Backward Compatibility Issues

WAI applications built using the previous versions of iPlanet Web Server need
to pass a command line command to work correctly.

For Java WAI applications under JDK 1.1, the command is:

-ORBbackCompat=true

For example:

java -DORBdisableLocator=true -ORBbackCompat=true WASP
54 Programmer’s Guide

WAI Compatibility Issues
For C++ WAI applications, the command is:

-ORBbackCompat 1

For example:

WASP.EXE -ORBagent 0 -ORBbackCompat 1

Different Signature for ORB.init

Java WAI applications that use the ORB.init call have to be modified to use
the call with a different signature in order to work under Java 2. Replace the
call ORB.init with the call ORB.init(String [] args, Properties
props).

Other Java Compatibility Issues

Please refer to Visibroker for Java 3.4 release notes for more information on
compatibility with Java 2 platform at:

ftp://ftp.visigenic.com/private/vbj/vbj34/vbjrel.html
Chapter 5, WAI Release Notes 55

WAI Compatibility Issues
56 Programmer’s Guide

Index

A
abbrev, value of sizefmt attribute 37

about this book 5

Access Control API 24
for more info 25
loading new authentication services 25

Access Control Programmer’s Guide 25

acl.conf 30

ACL files
editing 25

add-footer SAF 48

add-header SAF 48

AddLog
step in request handling process 32

Agents API 8

AIX, relinking 3.x plugins 48

API reference
JSP 21

APIs
Access Control 24
CGI 14
changes in iPlanet Web Server 4.1 8
for server-parsed HTML tags 10
in iPlanet Web Server 4.1 9
Java servlets and JSP 18
NSAPI 21
server-side JavaScript
summary 26
WAI 23
Web Publishing 25

Application Manager
server-side JavaScript 13

assign-name SAF 50

AuthTrans

step in request handling process 31

B
buffered streams 51

bytes, value of sizefmt attribute 37

C
cache-init SAF

minor changes to 48

CGI 14
adding CGI programs to the server 16
enabling 14
for more info 18
specifying CGI directories 14
specifying file extensions 15
variables 16
website 18

cgi attribute of the exec command 38

changes
API 8
logging changes 46
magnus.conf directives 49
NSAPI 45

ChunkedRequestBufferSize
magnus.conf directive 49

ChunkedRequestTimeout
magnus.conf directive 49

cindex-init SAF
minor changes to 48

client certificate CGI variables 16

cmd attribute of the exec command 38

Common Gateway Interface web site 18

compiling
Java servlets 18
Index 57

server-side JavaScript applications 12

config
server-side HTML command 36

config directory 9
location 9

configuration files 9, 29
location 9, 29
magnus.conf 30, 49
mime.types 32
obj.conf 31

configuring
iPlanet Web Server 29
JDK 19
JRE 19

content
changing on server 10
dynamically generating 9

contexts.properties 30

cookies
logging 47
NSAPI functions 47

CORBA 23

CORBA/IIOP 8

Core JavaScript Reference 8

creating
custom server-side tags 40
servlets 20

custom server-side HTML tags
defining 41
initialization functions for 43
loading 43

D
databases

accesssing from server-side JavaScript 14

DATE_GMT
variable in server-side HTML command 39

DATE_LOCAL
variable in server-side HTML command 39

defining

custom server-side HTML tags 40
servlets 20

directives 21, 32

directories
for CGI 14
for servlets 20

DOCUMENT_NAME
variable in server-side HTML command 39

DOCUMENT_URI
variable in server-side HTML command 39

dynamically generating content 9

E
echo

server-side HTML command 37

editing
ACL files 25

enabling
3.x plugins on AIX 48
CGI 14
JSP 19
NSAPI 22
server-side JavaScript 12
server-side tags 10
servlets 19
WAI 23
web publishing 26

environment variables
in server-side HTML commands 39

errmsg attribute of config command 36

Error
step in request handling process 32

exec
server-side HTML command 10, 38

extending
server functionality 10
the server 21

external databases
accessing from server-side JavaScript 14
58 Programmer’s Guide

F
file attribute of include command 37

file extensions
.jsp 20
.shtml 40
for CGI 15

find-pathinfo-forward parameter 50

find-pathinfo SAF 50

flastmod
affected by timefmt attribute 36
server-side HTML command 38

flex-init SAF 47

flex-rotate-init SAF 46

flushTimer
magnus.conf directive 49

footers
adding 48

fsize
server-side HTML command 38

G
generating

dynamic content 9

H
header files

nsapi.h 22
shtml_public.h 41

headers
adding 48

HTML tags
server-parsed 10
server-parsed commands 35

HttpApplets 8

I
IIOP 8, 23

include

server-side HTML command 37

Init
step in request handling process 31

Inprise 8, 23, 53

installing
JRE or JDK 19
JSP 20
plugins (SAFs) 22
server-side JavaScript applications 13
servlets 20
WAI applications 23
WAI component 23, 53

introduction 7

J
Java

JDK versions 19
JSP 18
server-side applets 8
servlets 18
servlets.jar 18

Java Development Kit
see JDK

Java Runtime Environment
see JRE

JavaScript
changes in server-side JavaScript 8
Core Reference 8
see also Server-Side JavaScript
server-side 11
Writing Server-Side JavaScript Applications 12

JavaScript Application Manager 13
for more info 13

JavaScript Reference 13

JavaServer Pages
see JSP

Java Servlet API documentation 20

JDK
configuring 19
installing 19
switching to 19
Index 59

versions 19

JRE
configuring 19
installing 19
switching to 19

jsa.conf 30

JSP 18
API reference 21
enabling 19
for more info 20
installing 20

jvm12.conf 30

L
LAST_MODIFIED

variable in server-side HTML command 39

LiveConnect 11

loading
custom server-side HTML tag 43
new authentication services 25
NSAPI plugins 22

load-modules SAF 22, 43

logging
changes in NSAPI functions 46
cookie values 47
relaxed mode 47

M
magnus.conf 30

directive changes 49
list of directives 31

mime.types 32
specifying CGI extensions 15

MIME types 32
for more info 34

modifying
server behavior 10

N
NameTrans

step in request handling process 31, 50

NativeThreads 10, 35

net_write
NSAPI function 42

Netscape Server Application Programming
Interface

see NSAPI

nocache parameter 50

nostat parameter 50

NSAPI 10, 21
changes in iPlanet Web Server 4.1 45
enabling 22
for more info 22
header file 22
installing plugins 22

nsapi.h 22

ntrans-base 50

O
obj.conf 31

adding new authentication services 25
directives 21
enabling server-parsed tags 10
enabling server-side JavaScript 12
enabling servlets 19
for more info 32
installing NSAPI plugins 22
installing WAI plugins 23
see NSAPI Programmer’s Guide for more

info 23
specifying CGI directories 15
specifying CGI extensions 15
using NSAPI to write SAFs 22

ObjectType
directive 32
step in request handling process 32

ORB.init 55

OSAGENT 54
60 Programmer’s Guide

overview 7

P
parse-html SAF 36

PathCheck
step in request handling process 32, 50

pfx2dir SAF 50

plugins
creating 21
for more info 22
installing 22
relinking, 3.x AIX 48

preface 5

Q
QUERY_STRING_UNESCAPED

variable in server-side HTML command 39

R
register-http-method SAF 50

relaxed
logging mode 47
parameter to flex-init SAF 47

request-handling process
steps 31

return codes
REQ_ABORTED 42
REQ_EXIT 42
REQ_NOACTION 42
REQ_PROCEED 42

rules.properties 30

S
SAFs

for more info 22
installing 22

security
functions 47

send-file SAF 50

Server Application Functions
see SAFs

server behavior
modifying 10

server extensions 21

server-parsed HTML tags 10

server plugins 21

server-side applets 8

server-side HTML commands 35
config 36
creating new server-side tags 40
echo 37
environment variables in 39
exec 38
flastmod 38
format 36
fsize 38
include 37
using 36

server-side HTML tags
creating 40

server-side JavaScript
accessing external databases 14
Application Manager 13
changes 8
compiling 12
enabling 12
installing applications 13
Writing SSJS Applications Applications 12

server-side tags 10
enabling parsing of 10
exec 10

Service
caching responses, preventing 50
step in request handling process 32

servlets
API documentation from Sun

Microsystems 18
compiling 18
embedding in HTML files 39
enabling 19
for more info 20
Index 61

installing 20
more info on creating 20
registered directories 20
virtual paths 20

servlets.jar 18

servlets.properties 30

<SERVLETS> tag 39

set-default-type SAF 51

shtml.dll 41

shtml.so 41

shtml_add_tag 41
function for registering custom server-side

tags 43

shtml_init 10, 35

shtml_public.h 41

shtml_send 10, 35

shtml files 40

ShtmlTagExecuteFunc
function for defining server-side tags 41

ShtmlTagInstanceLoad
function for defining server-side tags 42

ShtmlTagInstanceUnload
function for defining server-side tags 42

ShtmlTagPageLoadFunc
function for defining server-side tags 42

ShtmlTagPageUnLoadFn
function for defining server-side tags 42

sizefmt attribute of config command 37

SSJS
see server-side JavaScript

ssl-check SAF 47

StrictHttpHeaders
magnus.conf directive 49

summary
APIs 26

T
tag execution function

for customized server-side tag 41

tags
server-parsed HTML 35

TagUserData
data structure for custom server-side tags 41,

43

timefmt tag 36

type-by-extension SAF 33

U
UseOutputStreamSize

magnus.conf directive 49

util_cookie_find NSAPI function 47

V
variables

CGI 16
in server-side HTML commands 39

version control 26

virtual attribute of the include command 37

virtual paths
for servlets 20

Visibroker 8, 23, 53

W
WAI 53

compatibility issues 53
enabling 23
for more info 24
installing applications 23
installing component 23, 53
need for Visibroker 8
ORB.init 55
OSAGENT 54

Web Application Interface
see WAI

webpub.conf 30

web publishing 25
enabling 26
version control 26
62 Programmer’s Guide

Web Publishing API 25
for more info 26

Writing Server-Side JavaScript Applications 12,
14

Writing Web Applications with WAI 23
Index 63

64 Programmer’s Guide

 iii
About This Book 5
Overview 7
API Changes Since iPlanet Web Server 3.x 8
API Changes Since iPlanet Web Server 4.0 8
Configuration Files 9
iPlanet Web Server 4.1 APIs 9
Server-Parsed HTML Tags 10
Server-Side JavaScript 11
CGI 14
Java Servlets and JavaServer Pages (JSP) 18
NSAPI 21
Web Application Interface (WAI) API 23
Access Control API 24
Web Publishing API 25
API Summary 26
Configuration Files 29
magnus.conf 30
obj.conf 31
mime.types 32
Server-Parsed HTML Tags 35
Using Server-Side HTML Commands 36
config 36
include 37
echo 37
fsize 38
flastmod 38
exec 38
Environment Variables in Server-Side HTML Commands 39
Embedding Servlets 39
Defining Customized Server-Parsed HTML Tags 40
The Mechanics 41
NSAPI Changes 45
Version 4.0 Changes 45
Privatization of Some Data Structures 46
Logging Changes 46
 65

Cookie Support 47
New SAF for Security 47
New SAFs for Adding Headers and Footers 48
Minor Changes to Init-class SAFs 48
Relinking 3.x Plugins on the AIX Platform 48
Version 4.1 Changes 49
StrictHttpHeaders magnus.conf Variable 49
Chunked Encoding magnus.conf Variables 49
find-pathinfo-forward Parameter 50
nostat Parameter 50
nocache Parameter 50
register-http-method SAF 50
set-default-type SAF 51
Buffered Streams 51
WAI Release Notes 53
WAI Compatibility Issues 53
 57
66 Programmer’s Guide

	About This Book
	Overview
	API Changes Since iPlanet Web Server 3.x
	API Changes Since iPlanet Web Server 4.0
	Configuration Files
	iPlanet Web Server 4.1 APIs
	Server-Parsed HTML Tags
	Server-Side JavaScript
	CGI
	Java Servlets and JavaServer Pages (JSP)
	NSAPI
	Web Application Interface (WAI) API
	Access Control API
	Web Publishing API

	API Summary

	Configuration Files
	magnus.conf
	obj.conf
	mime.types

	Server-Parsed HTML Tags
	Using Server-Side HTML Commands
	config
	include
	echo
	fsize
	flastmod
	exec
	Environment Variables in Server-Side HTML Commands

	Embedding Servlets
	Defining Customized Server-Parsed HTML Tags
	The Mechanics

	NSAPI Changes
	Version 4.0 Changes
	Privatization of Some Data Structures
	Logging Changes
	Cookie Support
	New SAF for Security
	New SAFs for Adding Headers and Footers
	Minor Changes to Init-class SAFs
	Relinking 3.x Plugins on the AIX Platform

	Version 4.1 Changes
	StrictHttpHeaders magnus.conf Variable
	Chunked Encoding magnus.conf Variables
	find-pathinfo-forward Parameter
	nostat Parameter
	nocache Parameter
	register-http-method SAF
	set-default-type SAF
	Buffered Streams

	WAI Release Notes
	WAI Compatibility Issues

	Index

