
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Programmer’s Guide to
Servlets

iPlanet Web Server, Enterprise Edition
Version 4.1

806-4643-01
March 2000
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Copyright © 2000 Sun Microsystems, Inc. Some preexisting portions Copyright © 2000 Netscape Communications Corp. All
rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, JavaScript, iPlanet, and all Sun-, Java-, and iPlanet-based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. Netscape and the
Netscape N logo are registered trademarks of Netscape Communications Corporation in the U.S. and other countries. Other
Netscape logos, product names, and service names are also trademarks of Netscape Communications Corporation, which may
be registered in other countries.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of the product or this document may be reproduced in any form by any means without prior written
authorization of the Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape FastTrack Server, Netscape ONE, SuiteSpot, and the
Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in the United States
and other countries. Other Netscape logos, product names, and service names are also trademarks of Netscape
Communications Corporation, which may be registered in other countries. Other product and brand names are trademarks of
their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

Documentation Team: Jocelyn Becker, Robert Fish, Ann Hillesland, Sanborn Hodgkins, Amanda Lee, Laila Millar, Alan
Morgenegg, and June Smith

Version 4.1

Printed in the United States of America. 00 99 98 5 4 3 2 1

Recycled and Recyclable Paper

Contents

About This Book ...7

Chapter 1 Using Servlets and JavaServer Pages9

Servlets ...10

JavaServer Pages ..11

What Does the Server Need to Run Servlets and JSP?12

Serving Servlets and JSP ..13

Using the Server Manager Interface ..14

Activating Servlets and JSP ..15

Configuring Global Servlet Attributes ...16

Registering Servlet Directories ..16

Registering Individual Servlets ..18

Specifying Servlet Virtual Paths ..19

Specifying Servlet Contexts ...22

Configuring JRE/JDK Paths ...22

Deleting Version Files ...24

Configuring JVM ..25

Running 0.92 JSP ...27

Maximizing Servlet Performance ..27

Chapter 2 Servlet and JSP Examples ...29

Examples Shipped with iPlanet Web Server 4.1 ..29

Servlet Examples ..30

A Simple Servlet Example ...31

Example of a Servlet that Counts Visits ...32

JSP Examples ...35

JSP that Accesses the Request Object ..35

JSP that Responds to a Form and Uses Java Beans37
Contents iii

Appendix A Session Managers .. 43

Session Overview .. 43

Specifying a Session Manager .. 45

SimpleSessionManager .. 46

Parameters .. 46

Enabling SimpleSessionManager ... 46

Source Code for SimpleSessionManager ... 47

MMapSessionManager ... 48

Parameters .. 48

Enabling MMapSessionManager .. 48

JdbcSessionManager .. 49

Parameters .. 50

Enabling JdbcSessionManager ... 51

Source Code for JDBCSessionManager ... 52

How Do Servlets Access Session Data? .. 53

Appendix B Servlet Settings in obj.conf .. 55

Directives for Enabling Servlets .. 55

Directives for Registered Servlet Directories ... 57

JSP .. 57

Appendix C Properties Files .. 59

servlets.properties ... 59

rules.properties .. 60

contexts.properties .. 61

Appendix D JVM Configuration .. 65

Appendix E Debugging Servlets and JSPs ... 67

Servlet Debugging ... 67

JSP Debugging .. 68

Appendix F Remote Servlet Profiling ... 71

Appendix G API Clarifications .. 73

HttpUtils.getRequestURL ... 73

HttpSession.setMaxInactiveInterval .. 74
iv Programmer’s Guide to Servlets

GenericServlet.getInitParameter and getInitParameterNames 75

ServletContext.getAttributeNames .. 75

ServletContext.getContext ... 76

ServletRequest.getAttribute ... 76

RequestDispatcher.forward and include .. 77

Request.getInputStream and getReader ... 78

Index .. 79
Contents v

vi Programmer’s Guide to Servlets

About This Book
This book discusses how to enable and install Java servlets and JavaServer
Pages (JSP) in iPlanet™ Web Server, Enterprise Edition 4.1.

This book has the following chapters and appendices:

• Chapter 1, “Using Servlets and JavaServer Pages.”

This chapter discusses how to enable and install servlets and JSPs in iPlanet
Web Server 4.1. It explains how to specify settings for servlets and for the
JRE and JDK by using the Server Manager interface or by editing
configuration files.

• Chapter 2, “Servlet and JSP Examples.”

This chapter discusses example servlets and JSP.

• Appendix A, “Session Managers.”

This appendix discusses the session managers provided with iPlanet Web
Server and gives an overview of a sample session manager that you can
extend to customize session behavior to suit your own needs.

• Appendix B, “Servlet Settings in obj.conf.”

This appendix discusses how the configuration file obj.conf changes
depending on the settings for servlets and JSP.

• Appendix C, “Properties Files.”

This appendix discusses the servlets.properties file, which contains
configuration information for servlets, the rules.properties file, which
defines virtual paths for servlets, and the contexts.properties file,
which defines contexts for servlets.

• Appendix D, “JVM Configuration.”

This appendix discusses how to manually specify JVM configuration
information.

• Appendix E, “Debugging Servlets and JSPs.”

This appendix discusses how to debug servlets and JSPs.
About This Book 7

• Appendix F, “Remote Servlet Profiling.”

This appendix discusses how to enable remote profiling for servlets.

• Appendix G, “API Clarifications.”

This chapter discusses methods in the Servlets API that behave marginally
differently in iPlanet Web Server than specified in the Sun Microsystems’
Servlets API documentation or where the behavior documented by Sun
Microsystems is ambiguous.

Note Throughout this manual, all Unix-specific descriptions apply to the Linux
operating system as well, except where Linux is specifically mentioned.
8 Programmer’s Guide to Servlets

C h a p t e r

1
Using Servlets and JavaServer Pages
iPlanet Web Server 4.1 supports servlets and JavaServer Pages (JSP). This
chapter gives a brief overview of servlets and JSPs and discusses how to enable
and configure them in iPlanet Web Server 4.1.

The sections in this chapter are:

• Servlets

• JavaServer Pages

• What Does the Server Need to Run Servlets and JSP?

• Serving Servlets and JSP

• Using the Server Manager Interface

• Activating Servlets and JSP

• Configuring Global Servlet Attributes

• Registering Servlet Directories

• Registering Individual Servlets

• Specifying Servlet Virtual Paths

• Specifying Servlet Contexts

• Configuring JRE/JDK Paths

• Deleting Version Files

• Configuring JVM

• Running 0.92 JSP

• Maximizing Servlet Performance
Chapter 1, Using Servlets and JavaServer Pages 9

Servlets
Servlets
Java servlets are server-side Java programs that web servers can run to generate
content in response to a client request in much the same way as CGI programs
do. Servlets can be thought of as applets that run on the server side without a
user interface. Servlets are invoked through URL invocation.

iPlanet Web Server 4.1 includes support for JavaSoft’s Servlet API at the level of
the 2.2.1 specification.

Note Servlet API version 2.2.1 is fully backward compatible with version 2.1, so all
existing servlets will continue to work without modification or recompilation.

To develop servlets, use Sun Microsystems’ Java Servlet API. For information
about using the Java Servlet API, see the documentation provided by Sun
Microsystems at:

http://java.sun.com/products/servlet/index.html

iPlanet Web Server 4.1 includes all the files necessary for developing Java
Servlets. The servlets.jar file is in the iPlanet Web Server 4.1 installation
directory at:

server_root/bin/https/jar

When compiling servlets, make sure the servlets.jar file is accessible to
your Java compiler. Include the servlets.jar file in your CLASSPATH.

iPlanet Web Server 4.1 supports the <SERVLET> tag as introduced by Java Web
Server. This tag allows you to embed servlet output in an HTML file. No
configuration changes are necessary to enable this behavior. If SSI and servlets
are both enabled, the <SERVLET> tag is enabled.

The <SERVLET> tag syntax is slightly different from that of other SSI commands;
it resembles the <APPLET> tag syntax:

<servlet name=name code=classfile codebase=path iParam1=v1 iParam2=v2>

<param name=param1 value=v3>

<param name=param2 value=v4>

.

.

</servlet>
10 Programmer’s Guide to Servlets

JavaServer Pages
The code parameter, which specifies the .class file for the servlet, is always
required. The .class extension is optional. The codebase parameter is
required if the servlet is not defined in the servlets.properties file and the
.class file is not in the same directory as the HTML file containing the
<SERVLET> tag. The name parameter is required if the servlet is defined in the
servlets.properties file, and must match the servlet name defined in that
file.

For more information about the servlets.properties file, see Appendix C,
“Properties Files.” For more information about SSI commands, see the
Programmer’s Guide for iPlanet Web Server.

JavaServer Pages
iPlanet Web Server 4.1 supports JavaServer Pages (JSP) to the level of JSP API
1.1 compliance.

Note JSP API version 1.x is not backward compatible with JSP API version 0.92. To
run version 0.92 JSPs, you must create legacy directories for them as described
in the section “Running 0.92 JSP” on page 27.

A JSP is a page, much like an HTML page, that can be viewed in a web
browser. However, as well as containing HTML tags, it can include a set of JSP
tags that extend the ability of the web page designer to incorporate dynamic
content in a page. These tags provide functionality such as displaying property
values and using simple conditionals.

One of the main benefits of JSPs is that, like HTML pages, they do not need to
be compiled. The web page designer simply writes a page that uses HTML and
JSP tags and puts it on their web server. The web page designer does not need
to learn how to define Java classes or use Java compilers.

JSP pages can access full Java functionality in the following ways:

• by embedding Java code directly in scriptlets in the page

• by accessing Java beans

• by using server-side tags that include Java servlets

Both beans and servlets are Java classes that need to be compiled, but they can
be defined and compiled by a Java programmer, who then publishes the
interface to the bean or the servlet. The web page designer can access a pre-
compiled bean or servlet from a JSP page.
 Chapter 1, Using Servlets and JavaServer Pages 11

What Does the Server Need to Run Servlets and JSP?
For information about creating JSPs, see Sun Microsystem’s JavaServer Pages
web site at:

http://java.sun.com/products/jsp/index.html

For information about Java Beans, see Sun Microsystem’s JavaBeans web page
at:

http://java.sun.com/beans/index.html

What Does the Server Need to Run Servlets
and JSP?

iPlanet Web Server 4.1 includes the Java Runtime Environment (JRE) but not the
Java Development Kit (JDK) due to licensing restrictions. The server can run
servlets using the JRE, but it needs the JDK to run JSP.

iPlanet Web Server 4.1 requires you to use the following recommended
versions of JRE/JDK or later versions, with different platforms requiring
different versions, as summarized in Table 1.1.

Check the iPlanet Web Server Installation and Migration Guide and the latest
release notes for updates on required JDK versions.

Table 1.1 Supported JRE/JDK Versions by Platform

Platform JRE/JDK Version

Solaris Sparc 1.2.2_01

Windows NT 1.2.2_01

HPUX 1.2.2_02

AIX 1.2.1

DEC 1.2.1-2

Linux 1.2.2RC3+

IRIX 1.2.1
12 Programmer’s Guide to Servlets

Serving Servlets and JSP
Note On Sun Solaris, the JRE included is the JRE 1.2.2 reference implementation from
JavaSoft. For better performance, use the latest SunSoft production release of
JDK.

JDK 1.2 (and other JDK versions) are available from Sun Microsystems at:

http://java.sun.com/products/jdk/1.2/

You can specify the path to the JDK in either of the following ways:

• You can specify the path during the server installation process.

When you install iPlanet Web Server 4.1, one of the dialog boxes in the
installation process asks if you want to use a custom Java Development Kit
(JDK), and if so, you can specify the path to it.

• You can specify it after the server is installed.

To specify the path to the JDK, switch to the Web Server Administration Server,
select the Global Settings tab, and use the Configure JRE/JDK Paths page, as
discussed in the section “Configuring JRE/JDK Paths” on page 22.

Whether you specify the path to the JDK during installation or later, the path is
the directory in which you installed the JDK.

Serving Servlets and JSP
iPlanet Web Server 4.1 includes an appropriate version of the Java runtime
environment (JRE) for running servlets. For the server to be able to serve JSP,
you must specify a path to a Java Development Kit (JDK) as discussed in the
section “What Does the Server Need to Run Servlets and JSP?” on page 12.

For the server to serve servlets and JSP, servlet activation must be enabled. (See
the section “Activating Servlets and JSP” on page 15 for details.)

When servlets are enabled, you have a choice of two ways to make a servlet
accessible to clients:

• Put the servlet class file in one of the directories that has been registered
with the iPlanet Web Server as a servlet directory. For more information, see
“Registering Servlet Directories” on page 16.
 Chapter 1, Using Servlets and JavaServer Pages 13

Using the Server Manager Interface
• Define a servlet virtual path for the servlet. In this case, the servlet class can
be located anywhere in the file system or even reside on a remote machine.
For more information, see “Specifying Servlet Virtual Paths” on page 19.

No special steps are needed to enable JSP pages other than making sure that
JSP is enabled on the iPlanet Web Server. So long as JSP is enabled, the iPlanet
Web Server treats all files with a .jsp extension as JSPs. (Do not put JSP files in
a registered servlet directory, since the iPlanet Web Server expects all files in a
registered servlet directory to be servlets.) An exception is a JSP page written to
the 0.92 spec, which must be placed in a legacy directory; see the section
“Running 0.92 JSP” on page 27 for details.

In detail, to enable the iPlanet Web Server to serve servlets and JSP pages, do
the following steps:

1. Activating Servlets and JSP (this is the only step needed to enable JSP)

2. Configuring Global Servlet Attributes

3. Registering Servlet Directories

4. Registering Individual Servlets if Needed

5. Specifying Servlet Virtual Paths if Desired

6. Configuring JVM if Necessary

Using the Server Manager Interface
For information about using the Server Manager interface to specify settings for
servlets, see the following topics in the online help. All these pages are located
on the Servlets tab.

• The Enable/Disable Servlets/JSP Page

• The Servlet Directory Page

• The Legacy JSP Directory Page

• The Configure Global Servlet Attributes Page

• The Configure Servlet Attributes Page

• The Configure Servlet Virtual Path Translation Page

• The Configure JVM Attributes Page

• The Delete Version Files Page
14 Programmer’s Guide to Servlets

Activating Servlets and JSP
In addition, the Configure JRE/JDK Paths page on the Global Settings tab in the
Web Server Administration Server allows you to specify paths to the JRE and
JDK.

Activating Servlets and JSP
To enable and disable servlets and JSP in iPlanet Web Server 4.1, use the
Servlets>Enable/Disable Servlets/JSP page in the Server Manager interface.

You must enable both servlets and JSP to run JSP. Even if servlets are enabled,
JSP can still be disabled. However, if you disable servlets, JSP is automatically
also disabled. In this case, if you enable servlets later, you will need to re-
enable JSP also if desired.

You can also define a thread pool to be used for servlets. For more information
about thread pools, see “Maximizing Servlet Performance” on page 27 and
“Adding and Using Thread Pools” in Chapter 7, “Configuring Server
Preferences,” in the iPlanet Web Server Administrator’s Guide.

To enable servlets programmatically, add the following lines to obj.conf.
These directives first load the shared library containing the servlet engine,
which is in server_root/bin/https/bin/NSServletPlugin.dll on Windows NT
or server_root/bin/https/lib/libNSServletPlugin.so on Unix. Then they
initialize the servlet engine.

Init fn="load-modules" shlib="server_root/bin/https/bin/NSServletPlugin.dll"
funcs="NSServletEarlyInit,NSServletLateInit,NSServletNameTrans,NSServletService"
shlib_flags="(global|now)"

Init fn="NSServletEarlyInit" EarlyInit="yes"

Init fn="NSServletLateInit" LateInit="yes"

In the default object in obj.conf, add the following NameTrans directive:

NameTrans fn="NSServletNameTrans" name="servlet"

By default, regardless of whether servlets are enabled or disabled, the file
obj.conf contains additional objects with names such as servlet, jsp, and
ServletByExt. Do not delete these objects. If you delete them, you can no
longer activate servlets through the Server Manager.

A JSP page written to the 0.92 spec must be placed in a legacy directory; see
the section “Running 0.92 JSP” on page 27 for details.
 Chapter 1, Using Servlets and JavaServer Pages 15

Configuring Global Servlet Attributes
Configuring Global Servlet Attributes
You can specify the following optional servlet attributes:

• Startup Servlets -- servlets to be loaded when the iPlanet Web Server starts
up.

• Session Manager -- the session manager for servlets. For more information
about the session manager, see Appendix A, “Session Managers.”

• Session Manager Args -- the session manager arguments for the servlet
engine. For more information about the session manager, see Appendix A,
“Session Managers.”

• Reload Interval -- the time period that the server waits before re-loading
servlets and JSPs if they have changed on the server. The default value is 5
seconds.

You can set these attributes interactively in the Servlets>Configure Global
Servlet Attributes page in the Server Manager interface. Alternatively, you can
edit the configuration file servlets.properties in the server’s config
directory.

The following code shows an example of the settings in
servlets.properties:

General properties:
servlets.startup=hello
servlets.config.reloadInterval=5
servlets.config.docRoot=C:/Netscape/Server4/docs
servlets.sessionmgr=com.netscape.server.http.session.SimpleSessionManager

Registering Servlet Directories
One of the ways to make a servlet accessible to clients is to put it into a
directory that is registered with the iPlanet Web Server as a servlet directory.
Servlets in registered servlet directories are dynamically loaded when needed.
The server monitors the servlet files and automatically reloads them on the fly
as they change.

You can register any number of servlet directories for the iPlanet Web Server.
Initially, the iPlanet Web Server has a single servlet directory, which is
server_root/docs/servlet/.
16 Programmer’s Guide to Servlets

Registering Servlet Directories
For example, if the SimpleServlet.class servlet is in the servlet
subdirectory of the server’s document root directory (the default servlet
directory), you can invoke the servlet by pointing the web browser to:

http://your_server/servlet/SimpleServlet

The iPlanet Web Server expects all files in a registered servlet directory to be
servlets. The server treats any files in that directory that have the .class
extension as servlets. The iPlanet Web Server does not correctly serve other
files, such as HTML files or JSPs, that reside in that directory.

The server can have multiple servlet directories. You can map servlet
directories to virtual directories if desired. For example, you could specify that
http://poppy.my_domain.com/products/ invokes servlets in the directory
server_root/docs/january/products/servlets/.

To register servlet directories and to specify their URL prefixes, use the
Servlets>Servlet Directory page in the interface.

Alternatively, you can register servlet directories by adding appropriate
NameTrans directives to the default object in the file obj.conf, such as:

NameTrans fn="pfx2dir" from="/products"
dir="d:/netscape/server4/docs/january/products/servlets/"
name="ServletByExt"

You can invoke a servlet in a subdirectory of a registered servlet directory if
you include a package directive in the servlet code that corresponds to the path
from the registered servlet directory. For example, suppose the servlet is in the
following location, and that server_root/docs/servlet/ is a registered
servlet directory:

server_root/docs/servlet/HelloWorld/HelloWorldServlet.class

Include the following package directive as the first line in the Java source file:

package HelloWorld;

You can then invoke the servlet by pointing the web browser to:

http://your_server/servlet/HelloWorld.HelloWorldServlet
 Chapter 1, Using Servlets and JavaServer Pages 17

Registering Individual Servlets
Registering Individual Servlets
The iPlanet Web Server treats any file in a registered servlet directory as a
servlet. There is no need to register individual servlets that reside in these
directories unless any of the following criteria apply:

• The servlet takes input parameters that are not passed through the request
URL.

• You want to set up additional virtual URLs for the servlet.

• Your servlets are packaged or in a .jar file. The server does not search
.class or .jar files for packaged servlets.

If any of these conditions is true, register the individual servlet by using the
Servlets>Configure Servlet Attributes page in the Server Manager interface.
Alternatively, you can edit the file servlets.properties to add an entry for
the servlet.

When registering an individual servlet, specify the following attributes:

• Servlet Name -- The iPlanet Web Server uses this value as a servlet identifier
to internally identify the servlet. (This identifier is not part of the URL that is
used to invoke the servlet, unless by coincidence the identifier is the same
as the class code name.)

• Servlet Code (class name) -- the name of the class file. You do not need to
specify the .class extension.

• Servlet Classpath -- This is the absolute pathname or URL to the directory or
zip/jar file containing the servlet. The classpath can point anywhere in the
file system. The servlet classpath may contain a directory, a .jar or .zip
file, or a URL to a directory. (You cannot specify a URL as a classpath for a
zip or jar file.)

If the servlet classpath is not a registered servlet directory, you must
additionally provide a servlet virtual path for it (as discussed in “Specifying
Servlet Virtual Paths” on page 19) to make the servlet accessible to clients.

iPlanet Web Server supports the specification of multiple directories, jars,
zips, and URLs in the servlet classpath.

• Servlet Args -- a comma delimited list of additional arguments for the servlet
if required.
18 Programmer’s Guide to Servlets

Specifying Servlet Virtual Paths
For example, in Figure 1.1, the Servlets>Configure Servlet Attributes page of the
Server Manager interface shows configuration information for a servlet whose
class file buynow1A resides in the directory D:/Netscape/server4/docs/
servlet/buy. This servlet is configured under the name BuyNowServlet. It
takes additional arguments of arg1=45, arg2=online, arg3="quick
shopping".

Figure 1.1 Configuring attributes for an individual servlet

The following code shows an example of the configuration information for the
same servlet in servlets.properties:

servlet.BuyNowServlet.classpath=D:/Netscape/server4/docs/servlet/
buy;D:/Netscape/server4/docs/myclasses
servlet.BuyNowServlet.code=BuyNow1A
servlet.BuyNowServlet.initArgs=arg1=45,arg2=online,arg3="quick shopping"

Note that you can specify multiple values as the servlet classpath if needed.

Specifying Servlet Virtual Paths
If you register a servlet individually instead of putting it in a servlet directory,
you must define a servlet virtual path for it. For example, you could specify that
the URL

http://poppy.my_domain.com/plans/plan1

invokes the servlet defined in the directory

server_root/docs/plans/releaseA/planP2Version1A.class
 Chapter 1, Using Servlets and JavaServer Pages 19

Specifying Servlet Virtual Paths
You can set up servlet virtual paths for servlets that reside anywhere in the file
system, in or out of a registered servlet directory.

To specify a servlet virtual path, use the Servlets>Configure Servlet Virtual Path
Translation page in the Server Manager interface. In this page, specify the
virtual path name and the servlet name. You can alternatively manually edit the
rules.properties configuration file to add a servlet virtual path. Only
servlets for which a virtual path has been set up can use initial arguments (See
“GenericServlet.getInitParameter and getInitParameterNames” on page 75 for
information about initial arguments.)

Before using a servlet virtual path, a servlet identifier (or servlet name) must be
added for the servlet in the Servlets>Configure Servlet Attributes page of the
interface (or in the servlets.properties configuration file).

Virtual Servlet Path Example

This example shows how to specify that the logical URL

http://poppy.my_domain.com/plans/plan1

invokes the servlet defined in

server_root/docs/plans/releaseA/planP2Version1A.class.

1. Specify the servlet identifier, class file, and class path.

In the Servlets>Configure Servlet Attributes page in the interface, do the
following:

• In the Servlet Name field, enter an identifier for the servlet, such as plan1A.
(Notice that this is not necessarily the same as the class file name).

• In the Servlet Code field, enter the name of the class file, which is
planP2Version1A. Don’t specify any directories. The .class extension is
not required.

• In the Servlet Classpath field, enter the absolute path name for the
directory, jar or zip file where the servlet class file resides, or enter a URL
for a directory. In this example, you would enter server_root/docs/
servlet/plans/releaseA. (For example: D:/netscape/server4/docs/
servlet/plans/releaseA.)

• In the Servlet Args field, enter the additional arguments that the servlet
needs, if any. (This example does not use extra arguments.)
20 Programmer’s Guide to Servlets

Specifying Servlet Virtual Paths
Figure 1.2 shows the settings in the interface.

Save the changes.

Figure 1.2 Specifying the servlet name, code, and class path

To make this change programmatically, add the following lines to the
configuration file servlets.properties:

servlet.plan1A.classpath=D:/Netscape/server4/docs/servlet/plans/
releaseA/

servlet.plan1A.code=planP2Version1A

2. Specify the virtual path for the servlet.

In the Servlets>Configure Servlet Virtual Path Translations page, do the
following:

• In the Virtual Path field, enter the virtual path name. Note that the server
name is implied as a prefix, so in this case you would only need to enter
/plans/plan1 to specify the virtual path http://poppy.mcom.com/
plans/plan1.

• In the Servlet field, enter the identifier for the servlet that is invoked by this
virtual path. This is the servlet identifier that you specified in the Configure
Servlet Attributes page, which in this case is plan1A.

Save the changes.
 Chapter 1, Using Servlets and JavaServer Pages 21

Specifying Servlet Contexts
Figure 1.3 shows the settings in the interface.

Figure 1.3 Adding a virtual path

To do this programmatically, add the following line to rules.properties:

/plans/plan1=plan1A

After this virtual servlet path has been established, if a client sends a request to
the server for the URL http://poppy.my_domain.com/plans/plan1, the
server sends back the results of invoking the servlet in server_root/docs/
servlet/plans/releaseA/plan2PVersion1A.class.

Specifying Servlet Contexts
Contexts allow multiple servlets to exchange data and access each other’s
fields. Contexts are useful for defining virtual servers or for code isolation. You
define contexts in the servlets.properties and contexts.properties
files. For more information, see Appendix C, “Properties Files.”

Configuring JRE/JDK Paths
When you install iPlanet Web Server 4.1, you can choose to install the Java
Runtime Environment (JRE) that is shipped with the server, or you can specify a
path to your own JRE or the Java Development Kit (JDK).
22 Programmer’s Guide to Servlets

Configuring JRE/JDK Paths
The server can run servlets using the JRE, but it needs the JDK to run JSP. The
JDK is not bundled with the iPlanet Web Server, but you can download it for
free from Sun Microsystems at:

http://java.sun.com/products/jdk/1.2/

iPlanet Web Server 4.1 requires you to use version of the JDK listed in the
section “What Does the Server Need to Run Servlets and JSP?” on page 12.

Regardless of whether you choose to install the JRE or specify a path to the JDK
during installation, you can tell the iPlanet Web Server to switch to using either
the JRE or JDK at any time. Switch to the Web Server Administration Server,
select the Global Settings tab, and use the Configure JRE/JDK Paths page. You
can also change the path to the JDK in this page.

On the Configure JRE/JDK Paths page, supply values for the following fields if
you select the JDK radio button:

• JDK Path

Enter the path for the JDK. This is the directory where you installed the
JDK.

• JDK Runtime Libpath

Enter the runtime library path for the JDK.

• JDK Runtime Classpath

The class path includes the paths to the directories and jar files needed to
run the servlet engine, the servlet examples, and any other paths needed by
servlets that you add. You can add new values to the existing class path, but
don’t delete the existing value since it includes paths that are essential for
servlet operation.

Supply values for the following fields if you select the JRE radio button:

• JRE Path

Enter the path for the JRE. This is the directory where you installed the JRE.

• JRE Runtime Libpath

Enter the runtime library path for the JRE.

Note If you are not sure of the JDK runtime libpath, the JDK runtime classpath, or
the JRE runtime libpath, leave these fields blank to tell the server to use the
default paths.
 Chapter 1, Using Servlets and JavaServer Pages 23

Deleting Version Files
It is easiest to use the Configure JRE/JDK Paths page to switch between the JRE
and the JDK, but you can also make the change programmatically, as follows:

• On Unix:

Edit the file server_root/https-admserv/start-jvm.

If the server is currently using the JRE, this file has a variable NSES_JRE. To
enable the server to use a JDK, add the variable NSES_JDK whose value is
the JDK directory. You’ll also need to change the value of the NSES_JRE
variable.

NSES_JDK should point to the installation directory for the JDK, while
NSES_JRE should point to the JRE directory in the installation directory for
JDK (that is, jdk_dir/jre).

• On Windows NT:

Add the path to the Java libraries to the extrapath setting in magnus.conf.

Edit the NSES_JDK and NSES_JRE variables in the registry
HKEY_LOCAL_MACHINE/SOFTWARE/Netscape/Enterprise/4.0/. If the
server is enabled to use the JDK, both these variables are needed. If the
server is to use the JRE, only the NSES_JRE variable should be set.

NSES_JDK should point to the installation directory for the JDK, while
NSES_JRE should point to the JRE directory in the installation directory for
JDK (that is, jdk_dir/jre).

Note To activate changes to the JRE/JDK paths, you must restart the server from the
On/Off option on the Preferences tab.

Deleting Version Files
The server uses two directories to cache information for JavaServer Pages (JSP)
and servlets:

• ClassCache

When the server serves a JSP page, it creates a .java and a .class file
associated with the JSP and stores them in the JSP class cache under the
ClassCache directory.

• SessionData
24 Programmer’s Guide to Servlets

Configuring JVM
If the server uses the MMapSessionManager session manager, it stores
persistent session information in the SessionData directory. (For more
information about session managers, see Appendix A, “Session Managers.”)

Each cache has a version file containing a version number that the server uses
to determine the structure of the directories and files in the caches. You can
clean out the caches by simply deleting the version file.

When the server starts up, if it does not find the version files, it deletes the
directory structures for the corresponding caches and re-creates the version
files. Next time the server serves a JSP page, it recreates the JSP class cache. The
next time the server serves a JSP page or servlet while using
MMapSessionManager session manager, it recreates the session data cache.

If a future upgrade of the server uses a different format for the caches, the
server will check the number in the version file and clean up the caches if the
version number is not correct.

You can delete the version files simply by deleting them from the ClassCache
or SessionData directories as you would normally delete a file, or you can use
the Servlets>Delete Version Files page in the Server Manager to delete them.
After deleting one or both version files, be sure to restart the iPlanet Web Server
to force it to clean up the appropriate caches and to recreate the version files
before the server serves any servlets or JSPs.

Configuring JVM
If necessary, you can configure parameters for JVM either by using the
Servlets>Configure JVM Attributes page in the Server Manager interface, or by
editing jvm12.conf.

The default settings in iPlanet Web Server for JVM are suitable for running
servlets. However, there may be times when you want to change the settings.
For example, if a servlet or bean file uses a JAR file, add the JAR location to the
Classpath variable. To enable the use of a remote profiler, set the OPTITDIR
and Profiler variables.

Note A few attributes on the Configure JVM Attributes page on the Servlets tab show
as “Default.” Since you can use different JVMs, these default values are
unknown. You cannot query a JVM to find out the actual default values;
instead, refer to your JVM documentation. For example, for Sun’s JVM, if you
 Chapter 1, Using Servlets and JavaServer Pages 25

Configuring JVM
choose Yes for the JIT Compiler option, it shows as “Default” because JIT is
enabled in the JVM by default. However, if you choose No for the JIT compiler,
an explicit entry, jvm.compiler=NONE, is added to the jvm12.conf file.

The JVM parameters you can set are:

• Option -- You can set any options allowed by the vendor’s JVM.

• Profiler -- If you are using the Optimizeit! 3.0 profiler from Intuitive Systems,
enter the value optimizeit. For more information about this optimizer, see
Appendix F, “Remote Servlet Profiling.”

• OPTITDIR -- If you are using the Optimizeit! 3.0 profiler from Intuitive
Systems, enter the pathname for the directory where Optimizeit! resides, for
example, D:/App/IntuitiveSystems/OptimizeIt30D. For more information
about this optimizer, see Appendix F, “Remote Servlet Profiling.”

• Minimum Heap Size -- determines the minimum heap size allocated for
Java.

• Maximum Heap Size -- determines the maximum heap size allocated to
Java.

• Compiler -- You can specify options to turn on and off JIT (just-in-time
compiler). See your JVM documentation for details.

• Classpath -- Enter additional classpath values as needed. For example, if a
JSP uses a bean that is packaged in a JAR, add the JAR path to the classpath.

The classpath must not include backslashes in directory names. If you use
backslashes in the directory path when using the Web Server Administrative
Server interface, the system automatically converts the backslashes to
forward slashes. However, if you edit the jvm12.conf file, do not use
backslashes in directory names.

• Enable Class GC -- Specifies whether or not to enable class garbage
collection. The default is yes.

• Verbose Mode -- Determines whether the JVM logs a commentary on what
it is doing, such as loading classes. The commentary appears in the error
log.

• Enable Debug -- You can enable or disable remote debugging. The default
is disabled. For more information about remote debugging, see
Appendix E, “Debugging Servlets and JSPs.”
26 Programmer’s Guide to Servlets

Running 0.92 JSP
Running 0.92 JSP
JSP API version 1.x is not backward compatible with version 0.92. However, the
iPlanet Web Server correctly serves JSPs written to the 0.92 spec if you place
them in JSP legacy directories. If a 0.92 JSP does not reside in a JSP legacy
directory, it will not work.

The Legacy JSP Directory page in the Servlets tab of the Server Manager allows
you to add legacy JSP directories. For information about how to use this page,
see the Legacy JSP Directory page in the online help.

JSP legacy directories can contain JSPs and other files such as HTML pages.

Maximizing Servlet Performance
Consider the following guidelines for improving servlet performance:

• Use Sun’s JVM on Solaris--it’s up to 50% faster than JavaSoft’s.

• If you edit your obj.conf file manually, make sure that the servlet
NameTrans (NameTrans fn="NSServletNameTrans" name="servlet") is
always the first NameTrans directive.

This directive uses a highly optimized URI cache for loaded servlets and
returns REQ_PROCEED if the match is found, thus eliminating the need of
other NameTrans directives to be executed.

• Servlets defined individually (via the Configure Servlet Attributes page or
rules.properties and servlets.properties) are slightly faster than
dynamically loaded servlets (in servlet directories).

• The jvm12.conf file has a configuration parameter, jvm.stickyAttach.
Setting the value of this parameter to 1 causes threads to remember that
they are attached to the JVM, thus speeding up request processing by
eliminating AttachCurrentThread and DetachCurrentThread calls. It
can, however, have a side-effect: recycled threads which may be doing
other processing can be suspended by the garbage collector arbitrarily.
 Chapter 1, Using Servlets and JavaServer Pages 27

Maximizing Servlet Performance
Thread pools can be used to eliminate this side effect for other subsystems.
For more information about thread pools, see “Adding and Using Thread
Pools” in Chapter 7, “Configuring Server Preferences,” in the iPlanet Web
Server Administrator’s Guide.

• Increase the front-end thread stack size in magnus.conf (via the
StackSize variable), or the respective pool stack size parameter if you’re
using thread pools. For more information, see the NSAPI Programmer’s
Guide for iPlanet Web Server.

• Increase the heap size to help garbage collection: jvm.minHeapSize or
maxHeapSize or the Configure JVM Attributes page.

• Ensure that your classpath is short: jvm.classpath (if you don't need
some of the examples). You can set jvm.include.CLASSPATH=1, so it
won’t inherit the CLASSPATH environment variable.

• Sometimes, iPlanet Web Server 4.1 may run out of stack space if
applications use deep recursion when a JIT compiler is enabled, especially
on UNIX platforms where the default stack size is small, or in any cases
where very complex JSP pages are used.

You can set the stack space using the StackSize parameter in the
magnus.conf file. For more information, see the NSAPI Programmer’s
Guide for iPlanet Web Server.

• The use of the NSAPI cache improves servlet performance in cases where
the obj.conf configuration file has many directives. To enable the NSAPI
cache, include the following line in obj.conf:

Init fn="nsapi-cache-init" enable=true

• The session ID generator, which is used for servlet sessions, employs
cryptographically strong unique random number generation algorithms.
This may present a performance problem on older, slow machines. For
more information, see Appendix A, “Session Managers.”
28 Programmer’s Guide to Servlets

C h a p t e r

2
Servlet and JSP Examples
This chapter discusses some Servlet and JSP examples. It has the following
sections:

• Examples Shipped with iPlanet Web Server 4.1

• Servlet Examples

• JSP Examples

Examples Shipped with iPlanet Web Server
4.1

iPlanet Web Server 4.1 comes with a set of example servlets and JSP files. You
can find them at the following location:

server_root/plugins/samples/servlets

This directory contains the following directories:

• beans -- Contains example Java Bean files for JSP 0.92.

• beans.10 -- Contains example Java Bean files for JSP 1.x.

• bookstore -- Contains files for an online bookstore example. This example
contains both servlets and JSPs.
Chapter 2, Servlet and JSP Examples 29

Servlet Examples
• jsp.092 -- Contains subdirectories that each contain an example for JSP
0.92. To use one of these examples, you must place it in a legacy directory;
see “Running 0.92 JSP” on page 27 for details.

• jsp.10 -- Contains subdirectories that each contain an example for JSP 1.x.

• make -- Contains example makefiles for servlets. These are common
makefiles containing rules that are included by all other makefiles.

• servlets -- Contains subdirectories that each contain Java source files and
makefiles for servlet examples.

• sessions -- Contains session manager directories.

The SimpleSession directory contains code for
SimpleSessionManager.java, which is the default servlet session
manager when the iPlanet Web Server runs in single process mode, and
SimpleSession.java, which defines session objects, the sessions
managed by SimpleSessionManager. The source code for
SimpleSessionManager and SimpleSession are provided for you to use
as the starting point for defining your own session managers if desired.

The JdbcSession directory contains JdbcSessionManager.java and
JdbcSession.java, which contain support for sessions stored in a
database using JDBC.

For more information about sessions and session managers, see
Appendix A, “Session Managers.”

• tools -- Contains the SDKTools.jar file and other utility files.

Servlet Examples
This section discusses two servlet examples as follows:

• A Simple Servlet Example -- generates a very simple page to be displayed in
a web browser.

• Example of a Servlet that Counts Visits -- this servlet is used to count visits
to a web page.

You can find additional examples in the directory server_root/plugins/
samples/servlets/servlets.
30 Programmer’s Guide to Servlets

Servlet Examples
These examples are simple, introductory examples. For information about using
the Java Servlet API, see the documentation provided by Sun Microsystems at:

http://java.sun.com/products/servlet/index.html

A Simple Servlet Example

The following example code defines a very simple servlet. This is the
SimpleServlet example in the server_root/plugins/samples/servlets/
servlets/Simple1 directory.

This servlet generates an HTML page that says “This is output from
SimpleServlet.” as shown in Figure 2.1.

Figure 2.1 Output from SimpleServlet.class

This example defines the main servlet class as a subclass of HttpServlet and
implements the doGet method. The code is shown below:
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SimpleServlet extends HttpServlet

{

 public void doGet (

 HttpServletRequest request,

 HttpServletResponse response

) throws ServletException, IOException

 {

 PrintWriter out;

 String title = "Simple Servlet Output";

 // set content type and other response header fields first

 response.setContentType("text/html");
 Chapter 2, Servlet and JSP Examples 31

Servlet Examples
 // then write the data of the response

 out = response.getWriter();

 out.println("<HTML><HEAD><TITLE>");

 out.println(title);

 out.println("</TITLE></HEAD><BODY>");

 out.println("<H1>" + title + "</H1>");

 out.println("<P>This is output from SimpleServlet.");

 out.println("</BODY></HTML>");

 }

}

Example of a Servlet that Counts Visits

The following example code defines a servlet that counts visits to a web page.
This is the CounterServlet example in the server_root/plugins/samples/
servlets/servlets/Counter directory.

This servlet generates an HTML page that reports the number of visits for an
individual user and for all users, as shown in Figure 2.2.

Figure 2.2 Output from CounterServlet.class

This example defines the main servlet class as a subclass of HttpServlet and
implements the doGet method, as the SimpleServlet example did, but it also
defines a thread, tracks total hits by reading from and writing to a file, and
tracks hits from individual users using a cookie. The code is shown below:
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CounterServlet extends HttpServlet
{

private File _counterFile = new File ("/tmp/CounterServlet.dat");
private CounterWriterThread _cntWrtThread = new CounterWriterThread ();
private int _cnt = 0;

private boolean _fTerminating = false;

public void init (ServletConfig config)
throws ServletException

{
super.init (config);
32 Programmer’s Guide to Servlets

Servlet Examples
readCounter ();
_cntWrtThread.start ();

}

public class CounterWriterThread
extends Thread

{
public void run ()
{
while (!_fTerminating)
{

writeCounter ();
try {

sleep (1000);
}
catch (Exception ie)
{
}

}
}

}

private void writeCounter ()
{
DataOutputStream dos = null;

try{
dos = new DataOutputStream (new FileOutputStream (_counterFile));
dos.writeInt (_cnt);

}
catch (Exception e)
{
}
finally{
try {

if (dos != null)
dos.close ();

}
catch (Exception ioe)
{
}

}
}

private void readCounter ()
{
DataInputStream dis = null;

try{
dis = new DataInputStream (new FileInputStream (_counterFile));
_cnt = dis.readInt ();

}
catch (Exception e)
{

 Chapter 2, Servlet and JSP Examples 33

Servlet Examples
}
finally{
try {

if (dis != null)
dis.close ();

}
catch (Exception ioe)
{
}

}
}

 public void doGet (
 HttpServletRequest request,
 HttpServletResponse response
)

throws ServletException, IOException
 {
 PrintWriter out;

 // set content type and other response header fields first
 response.setContentType("text/html");

 // then write the data of the response
 out = response.getWriter ();

_cnt++;

Cookie cookies[] = request.getCookies();
Integer nof = new Integer (0);

for(int i = 0; i < cookies.length; i++)
{
if (cookies[i].getName ().equals ("CounterServletCookie"))
{

String nofS = cookies[i].getValue ();
try {

nof = Integer.valueOf (nofS);
}
catch (Exception nfe)
{
}
break;

}
}

nof = new Integer (nof.intValue () + 1);
Cookie c = new Cookie ("CounterServletCookie", nof.toString ());

c.setMaxAge (3600 * 24 * 365);
c.setPath ("/");

response.addCookie (c);

 out.println("<HTML><BODY><CENTER>");
34 Programmer’s Guide to Servlets

JSP Examples
if (nof.intValue () > 1)
out.println ("Thank you for coming back. You have visited this page "

+ nof + " times");

out.println("This page was accessed " + _cnt + " times total");
 out.println("</CENTER></BODY></HTML>");
 }
}

JSP Examples
This section presents the following JSP examples:

• JSP that Accesses the Request Object. This example is self-contained -- it
uses no external beans or Java classes.

• JSP that Responds to a Form and Uses Java Beans.

You can find additional examples in the directory server_root/plugins/
samples/servlets/jsp.10.

These examples are simple, introductory examples. For information about
creating JSPs, see Sun Microsystem’s JavaServer Pages web page at:

http://java.sun.com/products/jsp/index.html

JSP that Accesses the Request Object

JavaServer Pages (JSPs) contain both standard HTML tags and JSP tags.

All JSP pages can implicitly access the request object, which contains
information about the request that invoked the page, such as the requested
URI, the query string, the content type, and so on. The request object has
properties such as requestURI, queryString, and contentType.

This example displays information about the current request. It gets all its data
from the request object, which is automatically passed to the JSP. This is the
snoop.jsp example in the server_root/plugins/samples/servlets/
jsp.10/snp directory.
 Chapter 2, Servlet and JSP Examples 35

JSP Examples
Figure 2.3 shows an example of the output page generated by this JSP.

Figure 2.3 Output page generated by snoop.jsp

The source code for snoop.jsp is:
<html>

<body bgcolor="white">

<h1> Request Information </h1>

<%@ page session="false" %>

JSP Request Method: <%= request.getMethod() %>

Request URI: <%= request.getRequestURI() %>

Request Protocol: <%= request.getProtocol() %>

Servlet path: <%= request.getServletPath() %>

Path info: <%= request.getPathInfo() %>

Path translated: <%= request.getPathTranslated() %>

36 Programmer’s Guide to Servlets

JSP Examples
Query string: <%= request.getQueryString() %>

Content length: <%= request.getContentLength() %>

Content type: <%= request.getContentType() %>

Server name: <%= request.getServerName() %>

Server port: <%= request.getServerPort() %>

Remote user: <%= request.getRemoteUser() %>

Remote address: <%= request.getRemoteAddr() %>

Remote host: <%= request.getRemoteHost() %>

Authorization scheme: <%= request.getAuthType() %>

<hr>

The browser you are using is <%= request.getHeader("User-Agent") %>

<hr>

</body>

</html>

JSP that Responds to a Form and Uses
Java Beans

This example discusses a simple JSP that accesses data on Java beans to
respond to a form. This is the example in the server_root/plugins/
samples/servlets/jsp.10/checkbox directory.

This example presents a web page, check.html, that displays a form asking
the user to select their favorite fruits. The action of the form is
checkresult.jsp. This JSP file gets information about the fruits from a Java
bean. (Note that Java beans were originally designed for use with visual tool
builders, and they have some overhead that can make them slow when used to
retrieve data to display in web pages.)

The discussion of this example has the following sections:

• The Form
 Chapter 2, Servlet and JSP Examples 37

JSP Examples
• The Output Page Generated by the JSP File

• Accessing Input Parameters

• Using Externally Defined Java Beans

• Source Code for the JSP File

The Form

The form in the page has the following elements:

• Four checkboxes named Apples, Grapes, Oranges, and Melons

• A Submit button

The form’s method is POST and the action is checkresult.jsp. (It also works
if the form’s method is GET.)

<FORM TYPE=POST ACTION=checkresult.jsp>

Figure 2.4 shows an example of the form.

Figure 2.4 This form invokes a JSP as its action

The Output Page Generated by the JSP File

The JSP file checkresult.jsp responds to the form. It uses a request and then
a bean to access the parameters received from the form.

The output page generated by checkresult.jsp displays the fruits that were
selected. The JSP file gets information about the fruits from Java Beans.

This JSP file demonstrates the following features:

• Accessing Input Parameters

• Using Externally Defined Java Beans
38 Programmer’s Guide to Servlets

JSP Examples
Figure 2.5 shows an example of the output from checkresult.jsp:

Figure 2.5 A JSP page generated in response to a form submission

Accessing Input Parameters

JSP pages can extract input parameters when invoked by a URL with a query
string, such as when they are invoked as a form action for a form that uses the
GET method. The request.getParameterValues method retrieves an object
that has attributes for each parameter in the query string.

For example, if the following URL is used to invoke a JSP:

http://my_domain.com/fruits/checkresult.jsp?Apples=on&Oranges=on

The request object has properties Apples and Oranges.

Using Externally Defined Java Beans

Some bean objects, including the request object, are always available
implicitly to a JSP page. Other objects, such as user-defined objects, are not
automatically available to the page, in which case you have to include a
<useBean> tag to tell the page which object to use.
 Chapter 2, Servlet and JSP Examples 39

JSP Examples
The JSP tag <useBean> creates an instance of an externally defined Java Bean
for use within the JSP page. For example, the following code creates an
instance of the Java Bean object checkbox.CheckTest, which is defined in
checktest.html:

<jsp:useBean id="foo" scope="page" class="checkbox.CheckTest" />

In this case, the bean instance exists for the duration of the page.

For more information about defining Java Beans, see:

http://java.sun.com/beans/index.html

Source Code for the JSP File

Here is the source code for the JSP file checkresult.jsp:
<html>

<body bgcolor="white">

<%! String[] fruits; %>

<jsp:useBean id="foo" scope="page" class="checkbox.CheckTest" />

<jsp:setProperty name="foo" property="fruit" param="fruit" />

<hr>

The checked fruits (got using request) are:

<%

fruits = request.getParameterValues("fruit");

%>

<%

 if (fruits != null) {

 for (int i = 0; i < fruits.length; i++) {

%>

<%

 out.println (fruits[i]);

 }

} else out.println ("none selected");

%>

<hr>
40 Programmer’s Guide to Servlets

JSP Examples
The checked fruits (got using beans) are

<%

fruits = foo.getFruit();

%>

<%

 if (!fruits[0].equals("1")) {

 for (int i = 0; i < fruits.length; i++) {

%>

<%

 out.println (fruits[i]);

 }

} else out.println ("none selected");

%>

</body>

</html>
 Chapter 2, Servlet and JSP Examples 41

JSP Examples
42 Programmer’s Guide to Servlets

Appendix

A
Appendix A Session Managers
Session objects maintain state and user identity across multiple page requests
over the normally stateless HTTP protocol. A session persists for a specified
time period, across more than one connection or page request from the user. A
session usually corresponds to one user, who may visit a site many times. The
server can maintain a session either by using cookies or by rewriting URLs.
Servlets can access the session objects to retrieve state information about the
session.

This appendix has the following sections:

• Session Overview

• Specifying a Session Manager

• SimpleSessionManager

• MMapSessionManager

• JdbcSessionManager

• How Do Servlets Access Session Data?

Session Overview
An HTTP session represents the server’s view of the session. The server
considers a session new under these conditions:

• The client does not yet know about the session.
Appendix A, Session Managers 43

Session Overview
• The session has not yet begun.

A session manager automatically creates new session objects whenever a new
session starts. In some circumstances, clients do not join the session, for
example, if the session manager uses cookies and the client does not accept
cookies.

Note The session ID generator, which is used for servlet sessions, employs
cryptographically strong unique random number generation algorithms. This
may present a performance problem on older, slow machines. The Session
Manager API allows you to redefine the random ID generation method and
customize it to your particular needs (see the SimpleSessionManager.java
example file described in “Source Code for SimpleSessionManager” on
page 47).

iPlanet Web Server 4.1 comes with three session managers for creating and
managing sessions:

• SimpleSessionManager -- the default session manager when the server
runs in single process mode.

• MMapSessionManager -- the default session manager when the server runs
in multi-process mode.

• JdbcSessionManager -- a session manager that stores session information
in a database using the JDBC API.

iPlanet Web Server 4.1 also allows you to develop your own session managers
and load them into the server. The build includes the source code for
SimpleSessionManager and the session object it manages, SimpleSession.
The source code files for these classes are provided as a starting point for you
to define your own session managers if desired. These Java files are in the
directory server_root/plugins/samples/servlets/sessions/
SimpleSession.

The build also includes the source code for JdbcSessionManager and the
session object it manages, JdbcSession. These Java files are in the directory
server_root/plugins/samples/servlets/sessions/JdbcSession.
44 Programmer’s Guide to Servlets

Specifying a Session Manager
Specifying a Session Manager
By default, if the iPlanet Web Server starts in single process mode, it uses
SimpleSessionManager as the session manager for servlets. If it starts in multi-
process mode, it uses MMapSessionManager. For more information about
single process mode versus multi-processes mode, see Chapter 7, “Configuring
Server Preferences,” in the iPlanet Web Server Administrator’s Guide. In
addition, you can read about the MaxProcs parameter in the magnus.conf file
in the NSAPI Programmer’s Guide for iPlanet Web Server.

You can change the session manager in any of the following ways:

• Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.

In the Session Manager field, specify the session manager, and, if
appropriate, specify parameters for the session manager in the Session
Manager Args field.

• Edit the file servlets.properties in the directory server_id/config.

Add a line specifying a value for servlets.sessionmgr and, if
appropriate, also add a line specifying the parameters for the session
manager. For example:

servlets.sessionmgr=com.netscape.server.http.session.YourSesMgr
servlets.sessionmgr.initArgs=maxSessions=20,timeOut=300,reapInterval=150

• Edit the file contexts.properties in the directory server_id/config.

Add a line specifying a value for context.context_name.sessionmgr
and, if appropriate, also add a line specifying the parameters for the session
manager. For example:

context.global.sessionmgr=com.netscape.server.http.session.YourSesMgr
context.global.sessionmgr.initArgs=maxSessions=20,timeOut=300

You can change the global context or define a new context and assign
specific servlets to it. For more information, see Appendix C, “Properties
Files.”
Appendix A, Session Managers 45

SimpleSessionManager
SimpleSessionManager
The SimpleSessionManager works only in single process mode. It is loaded
by default if the iPlanet Web Server starts in single-process mode when a
SessionManager is not specified in the servlets.properties or
contexts.properties configuration file. These sessions are not persistent,
that is, all sessions are lost when the server is stopped.

Parameters

The SimpleSessionManager class takes the following parameters:

• maxSessions - the maximum number of sessions maintained by the session
manager at any given time. The session manager refuses to create any more
new sessions if there are already maxSessions number of sessions present
at that time. The default value is 1000.

• timeOut - the amount of time in seconds after a session is accessed by the
client before the session manager destroys it. Those sessions that haven’t
been accessed for at least timeOut seconds are destroyed by the reaper
method. The default value is 1800 (30 minutes).

• reapInterval - the amount of time in seconds that the SessionReaper
thread sleeps before calling the reaper method again. The default value is
600 (10 minutes).

Enabling SimpleSessionManager

You may want to enable SimpleSessionManager to change its default
parameters. You can also enable SimpleSessionManager for a particular
context if the server is running in multi-process mode. To enable the iPlanet
Web Server to use SimpleSessionManager, do any of the following:

• Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.

In the Session Manager field specify:

com.netscape.server.http.session.SimpleSessionManager
46 Programmer’s Guide to Servlets

SimpleSessionManager
You can also specify parameters for the session manager in the Session
Manager Args field, for example:

maxSessions=20,timeOut=300,reapInterval=150

• Edit the file servlets.properties in the directory server-id/config.

Add a line specifying a value for servlets.sessionmgr and a line
specifying the parameters for the session manager:

servlets.sessionmgr=com.netscape.server.http.session.SimpleSessionManager
servlets.sessionmgr.initArgs=maxSessions=20,timeOut=300,reapInterval=150

• Edit the file contexts.properties in the directory server-id/config.

Add a line specifying a value for context.context_name.sessionmgr
and a line specifying the parameters for the session manager:

context.global.sessionmgr=com.netscape.server.http.session.SimpleSessionManager
context.global.sessionmgr.initArgs=maxSessions=20,timeOut=300,reapInterval=150

You can change the global context or define a new context and assign
specific servlets to it. For more information, see Appendix C, “Properties
Files.”

Source Code for SimpleSessionManager

The SimpleSessionManager creates a SimpleSession object for each session.
The source files for SimpleSessionManager.java and SimpleSession.java
are in the directory server_root/plugins/samples/servlets/sessions/
SimpleSession.

The source code files for SimpleSessionManager.java and
SimpleSession.java are provided so you can use them as the starting point
for defining your own session managers and session objects. These files are
very well commented.

SimpleSessionManager extends NSHttpSessionManager. The class file for
NSHttpSessionManager is in the JAR file NSServletLayer.jar in the
directory server_root/bin/https/jar. The SimpleSessionManager
implements all the methods in NSHttpSessionManager that need to be
implemented, so you can use SimpleSessionManager as an example of how
to extend NSHttpSessionManager. When compiling your subclass of
SimpleSessionManager or NSHttpSessionManager, be sure that the JAR file
NSServletLayer.jar is in your compiler’s classpath.
Appendix A, Session Managers 47

MMapSessionManager
MMapSessionManager
This is a persistent memory map (mmap) file based session manager that works
in both single process and multi-process mode. It can be used for sharing
session information across multiple processes possibly running on different
machines. It is loaded by default if the iPlanet Web Server starts in multi-
process mode when a session manager is not specified in the
servlets.properties or contexts.properties configuration file.

Parameters

MMapSessionManager takes the following parameters:

• maxSessions - the maximum number of sessions maintained by the session
manager at any given time. The session manager refuses to create any more
new sessions if there are already maxSessions number of sessions present
at that time. The default value is 1000.

• maxValuesPerSession - the maximum number of values or objects a
session can hold. There is no limit.

• maxValuesSize - the maximum size of each value or object that can be
stored in the session. There is no limit.

• timeOut - the amount of time in seconds after a session is last accessed by
the client before the session manager destroys it. Those sessions that
haven’t been accessed for at least timeOut seconds are destroyed by the
reaper method. The default value is 1800 (30 minutes).

• reapInterval - the amount of time in seconds that the SessionReaper
thread sleeps before calling the reaper method again. The default value is
600 (10 minutes).

Enabling MMapSessionManager

You may want to enable MMapSessionManager to change its default
parameters. You can also enable MMapSessionManager for a particular context
if the server is running in single process mode. To enable iPlanet Web Server to
use MMapSessionManager, do any of the following:
48 Programmer’s Guide to Servlets

JdbcSessionManager
• Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.

In the Session Manager field specify:

com.netscape.server.http.session.MMapSessionManager

You can also specify parameters for the session manager in the Session
Manager Args field, for example:

maxSessions=20,maxValueSize=1024,timeOut=300,reapInterval=150

• Edit the file servlets.properties in the directory server-id/config.

Add a line specifying a value for servlets.sessionmgr and a line
specifying the parameters for the session manager:

servlets.sessionmgr=com.netscape.server.http.session.MMapSessionManager
servlets.sessionmgr.initArgs=maxSessions=20,maxValueSize=1024,timeOut=300,reapInt
erval=150

• Edit the file contexts.properties in the directory server-id/config.

Add a line specifying a value for context.context_name.sessionmgr
and a line specifying the parameters for the session manager:

context.global.sessionmgr=com.netscape.server.http.session.MMapSessionManager
context.global.sessionmgr.initArgs=maxSessions=20,maxValueSize=1024,timeOut=300,
reapInterval=150

You can change the global context or define a new context and assign
specific servlets to it. For more information, see Appendix C, “Properties
Files.”

This session manager can only store objects that implement
java.io.Serializable.

JdbcSessionManager
This is a persistent JDBC-based session manager that works in both single
process and multi-process modes. It can be used to store sessions in a custom
database, which can then be shared across multiple processes possibly running
on different machines.

This sample JDBC session manager is not written, tested, or intended for
production use. It is provided so that you can customize its behavior to suit
your own needs.
Appendix A, Session Managers 49

JdbcSessionManager
JdbcSessionManager has been tested with a standard JDBC-ODBC driver
against Microsoft SQL Server 7.0SP1. You must set up the ODBC source,
database, and table for the session manager to use. It is recommended that the
Session ID column be indexed for higher lookup performance.

Parameters

JdbcSessionManager takes the following parameters:

• timeOut - the amount of time in seconds after a session is accessed by the
client before the session manager destroys it. Those sessions that haven’t
been accessed for at least timeOut seconds are destroyed by the reaper
method. The default value is 1800 (30 minutes).

• provider - the JDBC driver (the default is
sun.jdbc.odbc.JdbcOdbcDriver). For more information about the JDBC
API, see the following web site:

http://java.sun.com/products/jdbc/index.html

• url - the data source (the default is jdbc:odbc:LocalServer).

• table - name of the SQL table that store sessions (the default is sessions).

• username - the login username for the database.

• password - the login password for the database.

• reaperActive - tells the session manager whether to run session reaper to
remove expired sessions from the database when true, which is the default
value. It is recommended that only one server in the cluster be running the
reaper.

• accessTimeColumn - the name of the column that holds the last access
time in minutes (the default name is AccessTime). The SQL type is
NUMERIC(9).

• sessionIdColumn - the name of the column that holds the session ID (the
default name is SessionID). The SQL type is VARCHAR(100).

• valueColumn - the name of the column that holds the session object (the
default name is Value). The SQL type is VARBINARY(4096). This column
must be large enough to accommodate all your session data.
50 Programmer’s Guide to Servlets

JdbcSessionManager
Each type of operation on the database that handles session information
(looking up, inserting, updating, and deleting) is performed by a corresponding
dedicated connection. Each of these connections has a precompiled SQL
statement for higher performance. The following parameters allow you to
customize the number of dedicated connections that perform each of the
operations.

• lookupPool - the number of connections that perform lookup operations
(the default is 4 connections).

• insertPool - the number of connections that perform insert operations
(the default is 4 connections).

• updatePool - the number of connections that perform update operations
(the default is 4 connections).

• deletePool - the number of connections that perform delete operations
(the default is 2 connections).

Enabling JdbcSessionManager

You may want to enable JdbcSessionManager to change its default
parameters. You can also enable JdbcSessionManager for a particular context
if the server is running in single process mode. To enable iPlanet Web Server to
use JdbcSessionManager, do any of the following:

• Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.

In the Session Manager field specify:

com.netscape.server.http.session.JdbcSessionManager

You can also specify parameters for the session manager in the Session
Manager Args field, for example:

timeOut=1200,username=mysession,password=mypassword

• Edit the file servlets.properties in the directory server-id/config.

Add a line specifying a value for servlets.sessionmgr and a line
specifying the parameters for the session manager:

servlets.sessionmgr=com.netscape.server.http.session.JdbcSessionManager
servlets.sessionmgr.initArgs=timeOut=1200,username=mysession,password=mypassword
Appendix A, Session Managers 51

JdbcSessionManager
• Edit the file contexts.properties in the directory server-id/config.

Add a line specifying a value for context.context_name.sessionmgr
and a line specifying the parameters for the session manager:

context.global.sessionmgr=com.netscape.server.http.session.JdbcSessionManager
context.global.sessionmgr.initArgs=timeOut=1200,username=mysession,password=mypas
sword

You can change the global context or define a new context and assign
specific servlets to it. For more information, see Appendix C, “Properties
Files.”

This session manager can only store objects that implement
java.io.Serializable.

Source Code for JDBCSessionManager

The JdbcSessionManager creates a JdbcSession object for each session. The
source files JdbcSessionManager.java and JdbcSession.java are in the
directory server_root/plugins/samples/servlets/sessions/
JdbcSession.

The source code files, JdbcSessionManager.java and JdbcSession.java,
are provided so you can use them as the starting point for defining your own
session managers and session objects. These files are very well commented.

JdbcSessionManager extends NSHttpSessionManager. The class file for
NSHttpSessionManager is in the JAR file NSServletLayer.jar in the
directory server_root/bin/https/jar. The JdbcSessionManager
implements all the methods in NSHttpSessionManager that need to be
implemented, so you can use JdbcSessionManager as an example of how to
extend NSHttpSessionManager. When compiling your subclass of
JdbcSessionManager or NSHttpSessionManager, be sure that the JAR file
NSServletLayer.jar is in your compiler’s classpath.
52 Programmer’s Guide to Servlets

How Do Servlets Access Session Data?
How Do Servlets Access Session Data?
To access the state information stored in a session object, your servlet can
create a new session as follows:

// request is an HttpServletRequest that is passed to the servlet
SessionClass session = request.getSession(true);

The servlet can call any of the public methods in
javax.servlet.http.HttpSession on the session object. These methods
include (among others):

getCreationTime
getId
getLastAccessedTime
getMaxInactiveInterval
getValue

For more information about the classes HttpServletRequest and
HttpSession, see Sun Microsystem’s API Servlets Documentation at:

http://java.sun.com/products/servlet/2.1/html/api-reference.fm.html
Appendix A, Session Managers 53

How Do Servlets Access Session Data?
54 Programmer’s Guide to Servlets

Appendix

B
Appendix B Servlet Settings in obj.conf
The iPlanet Web Server 4.1 Administration Server automatically modifies the
file obj.conf in the config directory to load the servlet engine if servlets are
enabled. Whenever you make changes to servlet settings by using the Server
Manager interface, the system automatically updates obj.conf appropriately.

However, in case you are interested in the settings that affect servlets, this
appendix describes the directives in obj.conf and value settings in
mime.types that are relevant to servlets.

Directives for Enabling Servlets
The following directives in the init section of obj.conf load and initialize the
servlet engine to enable servlets (for Windows NT):

Init fn="load-modules" shlib="server_root/bin/https/bin/
NSServletPlugin.dll"
funcs="NSServletEarlyInit,NSServletLateInit,NSServletNameTrans,
NSServletService" shlib_flags="(global|now)"

Init fn="NSServletEarlyInit" EarlyInit=yes

Init fn="NSServletLateInit" LateInit=yes

for Unix, the directives are the same except for the following line:

Init fn="load-modules" shlib="server_root/bin/https/lib/
libNSServletPlugin.so"
Appendix B, Servlet Settings in obj.conf 55

Directives for Enabling Servlets
NSServletEarlyInit takes an optional parameter cache_dir that specifies
the location of a temporary cache directory for JSP classes. By default, the
directory is named ClassCache and goes under your server root directory.

NSServletLateInit takes an optional parameter CatchSignals that specifies
whether or not Java thread dumps are logged. The value is yes or no.

NSServletService takes two optional parameters, servlet="servlet_name"
and context="context_name". These parameters allow you to define objects
in obj.conf that generate responses for specific servlets or contexts. You can
use one or both parameters in a directive. The servlet or context must be
defined in the servlets.properties or contexts.properties file. You can
define an object that pertains to a particular servlet, a particular servlet context,
or both, as follows:

<Object name="MyServlet">
Service fn="NSServletService" context="MyServletContext"
servlet="MyServletName"
</Object>

For an example of the basic use of NSServletService, see the discussion of
Service examples in Chapter 2, “Syntax and Use of Obj.conf” in the NSAPI
Programmer’s Guide for iPlanet Web Server.

When servlets are enabled, the following directive appears in the default object:

NameTrans fn="NSServletNameTrans" name="servlet"

This directive is used for servlet virtual path translations and for the URI cache.
Do not delete this line when servlets are enabled.

Also, obj.conf always has the following objects, which you should not delete:

<Object name="servlet">
Service fn="NSServletService"
</Object>

<Object name="jsp">
Service fn="NSServletService"
</Object>

If you delete these objects, you can no longer use the Server Manager interface
to enable servlets and modify servlet settings.

For more information, see the NSAPI Programmer’s Guide for iPlanet Web
Server.
56 Programmer’s Guide to Servlets

Directives for Registered Servlet Directories
Directives for Registered Servlet Directories
For each registered servlet directory, the default object in obj.conf has a
NameTrans directive that assigns the name ServletByExt to all requests to
access that directory. For example:

NameTrans fn="pfx2dir" from="/servlet" dir="D:/Netscape/Server4/docs/
servlet" name="ServletByExt"

A separate object named ServletByExt has instructions for processing
requests for servlets:

<Object name="ServletByExt">
ObjectType fn="force-type" type="magnus-internal/servlet"
Service type="magnus-internal/servlet" fn="NSServletService"
</Object>

Do not delete this object, even if no servlet directories are currently registered.
If this object is deleted, you can no longer use the Server Manager interface to
register servlet directories.

JSP
The following line in mime.types sets the type for files with the extension
.jsp:

type=magnus-internal/jsp exts=jsp

When JSP is enabled, the following directive in obj.conf handles the
processing of requests for files of type magnus-internal/jsp (that is, JSP
files):

Service fn="NSServletService" type="magnus-internal/jsp"
Appendix B, Servlet Settings in obj.conf 57

JSP
58 Programmer’s Guide to Servlets

Appendix

C
Appendix C Properties Files
This appendix discusses the purpose and use of the files
servlets.properties, rules.properties, and contexts.properties,
which reside in the directory server_id/config.

servlets.properties
The servlets.properties file defines global servlet settings and the list of
servlets in the system.

Examples of global servlet settings are which servlet to run when the iPlanet
Web Server starts up, the reload interval for servlets, and so on. The
servlets.properties file also specifies configuration information for
individual servlets. Configuration information includes the class name, the
classpath, and any input arguments required by the servlet.

If you want to specify a virtual path translation for a servlet, the servlet must be
configured in the servlets.properties file.

You can specify configuration information for servlets either by using the
Servlets>Configure Servlet Attributes page in the Server Manager interface or by
editing servlets.properties directly. Whenever you make a change in the
Servlets>Configure Servlet Attributes page in the Server Manager interface, the
system automatically updates servlets.properties.
Appendix C, Properties Files 59

rules.properties
When specifying attributes for a servlet, you specify a name parameter for the
servlet. This name does not have to be the name of the class file for the servlet;
it is an internal identifier for the servlet. You specify the name of the class file
as the value of the code parameter.

Here is a sample servlets.properties file:

servlets.properties

Servlets Properties
servlets to be loaded at startup
servlets.startup= hello
the reload interval for dynamically-loaded servlets and JSPs
(default is 10 seconds)
servlets.config.reloadInterval=5
the default document root,
needed so ServletContext.getRealPath will work
servlets.config.docRoot=E:/Netscape/Server4/docs
the session manager
servlets.sessionmgr=com.netscape.server.http.session.SimpleSessionManager
tracker servlet
servlet.tracker.code=MyTrackerServlet
servlet.tracker.classpath=D:/Netscape/Server4/docs/servlet
demo1 servlet
servlet.demo1.code=Demo1Servlet
servlet.demo1.classpath=D:/Netscape/Server4/docs/demos
servlet.demo1.initArgs=a1=0,b1=3456
servlet.demo1.context=context1

rules.properties
The rules.properties file defines servlet virtual path translations. For
example, you could set up a mapping so that the URL pointing to /mytest2
invokes the servlet named demo1 in the servlets.properties file. You can
specify virtual paths for your servlets either by setting parameters in the
Servlets>Configure Servlet Virtual Path Translation page of the Server Manager
interface or by specifying the paths in the rules.properties file.

Note that the name associated with the servlet in servlets.properties is
used in the file rules.properties -- the class name of the servlet does not
show up in rules.properties. For example, the following lines in
servlets.properties associate the servlet name demo1 with the servlet class
file Demo1Servlet.class in the directory D:/Netscape/Server4/docs/
demos.
60 Programmer’s Guide to Servlets

contexts.properties
in servlets.properties
demo1 servlet
servlet.demo1.code=Demo1Servlet
servlet.demo1.classpath=D:/Netscape/Server4/docs/demos

The following line in rules.properties defines a servlet virtual path
translation such that the URL http://server-name/mytest2 invokes the servlet
at D:/Netscape/Server4/docs/demos/Demo1Servlet.class.

/mytest2=demo1

Here is an example of rules.properties.

rules.properties

Servlet rules properties
This file specifies the translation rules for invoking servlets.
The syntax is:
/virtual-path=servlet-name
where virtual-path is the virtual path used to invoke the servlet,
and servlet-name is the name of the servlet as specified in
servlets.properties.
Surrounding white space is ignored.
The ordering of the rules is not important, as the longest
match is always used first.
/mytest1=tracker
/mytest2=demo1

contexts.properties
The contexts.properties file defines contexts, which allow multiple servlets
to exchange data and access each other’s fields. Contexts are useful for defining
virtual servers or for code isolation. If no contexts are defined, the default
global context is used for all servlets.

If the context for a servlet is not defined, the servlet belongs to the global
context. You can use the same servlet in multiple contexts.

Only the name of a context is required. Any other unspecified properties are
inherited from the global context. You can also change the properties of the
global context. The comments in the contexts.properties file list the default
property values of the global context.

Here is an example of contexts.properties.
Appendix C, Properties Files 61

contexts.properties
contexts.properties
@(#)contexts.properties (autogenerated)
#
Contexts Properties:
#
context.<context_name>.sessionmgr=session manager (some session managers
(like MMapSessionManager) can only be instantiated once within the
server
context.<context_name>.sessionmgr.initArgs=list of (name, value) pairs which
will represent parameters specific to the session manager
context.<context_name>.initArgs=list of (name, value) pairs which will be added
to this context’s attributes
context.<context_name>.realPathFromRequest=(true|false) tells the server whether
to calculate getRealPath based on docRoot of the context or try to go
through normal NSAPI steps
context.<context_name>.respondCookieVersion=(cookie version) tells the server
whether to respond with specific cookie version
context.<context_name>.sessionExpireOnClose(true|false) tells the server to mark
session cookies as directed to expire when the user quits the browser
context.<context_name>.includeTransparency=(true|false) tells the server whether
to try to honor setting headers from the included servlet
context.<context_name>.tempDir=path (forward slashes only) - sets up Servlet API
2.2 property for the temporary directory
context.<context_name>.reloadInterval=seconds - time interval within which the
server checks for jsp and servlet files being modified (global context
only)
context.<context_name>.javaBufferSize=bytes (deprecated)
context.<context_name>.bufferSize=bytes - initial http output stream buffer size
context.<context_name>.docRoot=path (forward slashes only) - this context
document root when not specified - web server’s document root will be
used (default)
context.<context_name>.inputStreamLengthCheck=(true|false) - makes
ServletInputStream to stop reading data, when Content-Length bytes are
read
context.<context_name>.outputStreamFlushTimer=(seconds|0) - forces the stream to
flush the data if certain time elapsed since the last flush; 0 - ignore
it
context.<context_name>.uri=contex_uri_base - additional URI prefix which
services as a context base
context.<context_name>.host=hostname
context.<context_name>.ip=ip
context.<context_name>.authdb=name - authentication database
context.<context_name>.classpath=name - global classpath for this context
context.<context_name>.signleClassLoader=(true|false) - tells the servlet engine
whether to use a single class loader for all servlets in the context
context.<context_name>.serverName=name - server instance name
context.<context_name>.contentTypeIgnoreFromSSI=(true|false) - ignore
setContentType when invoked from SSI
context.<context_name>.parameterEncoding=(utf8,none,auto) - advises the web
server on how to decode parameters from forms
#
<context_name>="global" is reserved for the global context. Every new context
will inherit initial settings of the global context
#
Context properties:
62 Programmer’s Guide to Servlets

contexts.properties
context.global.sessionmgr=com.netscape.server.http.session.SimpleSessionManager
context.global.sessionmgr.initArgs=
context.global.initArgs=initial=0
context.global.realPathFromRequest=false
context.global.respondCookieVersion=0
context.global.sessionExpireOnClose=false
context.global.includeTransparency=true
context.global.tempDir=/tmp
context.global.reloadInterval=5
context.global.javaBufferSize=0
context.global.bufferSize=4096
context.global.docRoot=/foo/bar
context.global.inputStreamLengthCheck=true
context.global.outputStreamFlushTimer=0
context.global.uri=/
context.global.host=
context.global.ip=
context.global.authdb=default
context.global.classpath=
context.global.singleClassLoader=false
context.global.contentTypeIgnoreFromSSI=true
context.global.parameterEncoding=utf8
#
################################# Contexts #############################
context.context1.name=context1
Appendix C, Properties Files 63

contexts.properties
64 Programmer’s Guide to Servlets

Appendix

D
Appendix D JVM Configuration
The Java Virtual Machine (JVM) works by default without any additional
configuration if properly set up.

However, if you need to specify settings for the JVM, such as additional
classpath information, you can configure the JVM properties for iPlanet Web
Server via the Administrator interface. You can add as many other properties as
you want to (up to 64).

You can also configure JVM parameters by editing the jvm12.conf
configuration file, which resides under the server’s config directory.

For example, to disable JIT, you can add the following line to jvm12.conf:

java.compiler=DISABLED

Here is an example jvm12.conf file. The jvm.classpath value is all on one
line in the actual file.
[JVMConfig]

#jvm.minHeapSize=1048576

#jvm.maxHeapSize=16777216

#jvm.enableClassGC=0

#jvm.verboseMode=1

#jvm.enableDebug=1

#jvm.printErrors=0

#jvm.option=-Xrunoii

#jvm.profiler=optimizeit
Appendix D, JVM Configuration 65

#jvm.disableThreadRecycling=0

#jvm.serializeAttach=0

#jvm.stickyAttach=0

#jvm.trace=5

#java.compiler=NONE

#OPTITDIR=D:/App/IntuitiveSystems/OptimizeIt30D

#jvm.serializeFirstRequest=0

#jvm.include.CLASSPATH=1

#nes.jsp.forkjavac=0

#nes.jsp.enabledebug=1

#jvm.exitOnAbort=0

jvm.classpath=d:/netscape/server411/plugins/samples/servlets/beans.10/
SDKBeans10.jar;d:/netscape/server411/plugins/samples/servlets/beans/
SDKBeans.jar;d:/netscape/server411/bin/https/jar/xml4j_1_1_9.jar;d:/
netscape/server411/bin/https/jar/Bugbase.jar;d:/netscape/server411/bin/
https/jar/Calljsac.jar

Generally you should use plain property options (like name=value) for the
JDK1.2 configuration and jvm.option=options for JVM-vendor dependent
configurations. There can be multiple occurrences of jvm.option parameters.

The jvm12.conf file has a configuration parameter, jvm.stickyAttach.
Setting the value of this parameter to 1 causes threads to remember that they
are attached to the JVM, thus speeding up request processing by eliminating
AttachCurrentThread and DetachCurrentThread calls. It can, however,
have a side-effect: recycled threads which may be doing other processing can
be suspended by the garbage collector arbitrarily.

Thread pools can be used to eliminate this side effect for other subsystems. For
more information about thread pools, see “Adding and Using Thread Pools” in
Chapter 7, “Configuring Server Preferences,” in the iPlanet Web Server
Administrator’s Guide.

For information about JVM, see The Java Virtual Machine Specification from
Sun at:

http://java.sun.com/docs/books/vmspec/html/VMSpecTOC.doc.html
66 Programmer’s Guide to Servlets

Appendix

E
Appendix E Debugging Servlets and JSPs
This appendix gives guidelines for debugging servlets and JSPs in iPlanet Web
Server 4.1.

Servlet Debugging
iPlanet Web Server 4.1 ships with the Java Runtime Environment (JRE) but not
the Java Development Kit (JDK) due to licensing restrictions. However, during
installation, you can select an option that tells the server to use a JDK if there is
one installed elsewhere on your system.

If the server has been instructed to use a JDK, you can do remote servlet
debugging. If the server is using the JRE, you need to switch it to using the JDK
before you can do remote debugging. For information on instructing the server
to use the JDK or the JRE, see the section “Configuring JRE/JDK Paths” on
page 22.
Appendix E, Debugging Servlets and JSPs 67

JSP Debugging
Assuming that the server is using the JDK, you can enable remote debugging by
following these steps:

1. Make sure that the server is running in single-process mode. Single-process
mode is the default, but you can check in the file magnus.conf to make
sure that the MaxProcs parameter is not set to a value greater than 1. If you
do not see a setting for MaxProcs in magnus.conf, the default value of 1 is
enabled for it.

For more information about single process mode versus multi-process
mode, see Chapter 7, “Configuring Server Preferences,” in the iPlanet Web
Server Administrator’s Guide.

2. Set the following parameters in jvm12.conf as appropriate:

jvm.enableDebug=1
java.compiler=NONE

3. In addition, on some platforms, you may be required to specify the
bootclasspath. For example, for Solaris platforms, if Java 1.2 is in /java,
you set it as:

jvm.option=-Xbootclasspath:/java/lib/tools.jar:/java/jre/lib/rt.jar

4. Start the server manually and record the password for remote debugging
(this is displayed on the console).

5. Start the Java debugger:

jdb -host your_host -password the_password

You should be able to debug your Java classes now using the jdb command.

JSP Debugging
iPlanet Web Server 4.1 uses a public domain JSP compiler developed as part of
Apache Software Foundation’s Jakarta project. The Jakarta project develops a
servlet engine called Tomcat, which includes a JSP compiler called Jasper. The
version of the JSP compiler is taken from the Tomcat 3.0 Milestone release.
Subsequent versions of iPlanet Web Server will use later versions of the Jasper
JSP compiler. For more information, see the following web site:

http://jakarta.apache.org/
68 Programmer’s Guide to Servlets

JSP Debugging
iPlanet Web Server 4.1 uses a native servlet engine, but uses the Jasper JSP
compiler for compiling a JSP page into a servlet. Jasper and iPlanet Web Server
4.1 are not tightly integrated, so you might need to edit the JVM Classpath (in
the Configure JVM Attributes page of the Server Manager or in the jvm12.conf
file) when deploying JSPs using Tag Libraries, beans, and so on.

For information about how to enable JSPs, see “Activating Servlets and JSP” on
page 15.

You can debug your JSPs by following these steps:

1. Make sure that the server is running in single-process mode. Single-process
mode is the default, but you can check in the file magnus.conf to make
sure that the MaxProcs parameter is not set to a value greater than 1. If you
do not see a setting for MaxProcs in magnus.conf, the default value of 1 is
enabled for it.

For more information about single process mode versus multi-process
mode, see Chapter 7, “Configuring Server Preferences,” in the iPlanet Web
Server Administrator’s Guide.

2. Set the following parameters in jvm12.conf as appropriate:

java.compiler=NONE
jvm.trace=6
nes.jsp.enabledebug=1

Setting java.compiler=NONE includes line numbers of the Java source
code in the verbose output of the log files. Setting jvm.trace=6 enables
verbose output from the JSP compiler and the servlet engine. Setting
nes.jsp.enabledebug=1 makes iPlanet Web Server 4.1 generate
debuggable Java servlets from the JSPs.
Appendix E, Debugging Servlets and JSPs 69

JSP Debugging
70 Programmer’s Guide to Servlets

Appendix

F
Appendix F Remote Servlet Profiling
You can use Optimizeit! 3.0 from Intuitive Systems to perform remote profiling
on the iPlanet Web Server to discover bottlenecks in server-side performance.

You can purchase Optimizeit! from Intuitve Systems at:

http://www.optimizeit.com/index.html

Once Optimizeit! is installed using the following instructions, it becomes
integrated into iPlanet Web Server 4.1.

To enable remote profiling, make the following modifications in the
jvm12.conf files as appropriate:

jvm.enableClassGC=0
jvm.option=-Xrunoii # this is only required for JDK1.2
jvm.profiler=optimizeit
java.compiler=NONE
OPTITDIR=optimizeit_root_dir/OptimizeIt30D

When the server starts up with this configuration, you can attach the profiler
(for further details see the Optimizeit! documentation).

Also, update the PATH and NSES_CLASSPATH system variables to include the
profiler’s own jar files and dll files.

Note If any of the configuration options are missing or incorrect, the profiler may
experience problems that affect the performance of the iPlanet Web Server.
Appendix F, Remote Servlet Profiling 71

72 Programmer’s Guide to Servlets

Appendix

G
Appendix G API Clarifications
This appendix clarifies the way some of the standard Servlet API methods work
in iPlanet Web Server 4.1. For the official documentation for the methods
discussed here (and for all servlet API methods) see the Servlets API Class
Reference published by Sun Microsystems at:

http://java.sun.com/products/servlet/2.1/html/api-reference.fm.html

This appendix provides clarifications for using the following methods with
iPlanet Web Server 4.1:

• HttpUtils.getRequestURL

• HttpSession.setMaxInactiveInterval

• GenericServlet.getInitParameter and getInitParameterNames

• ServletContext.getAttributeNames

• ServletContext.getContext

• ServletRequest.getAttribute

• RequestDispatcher.forward and include

• Request.getInputStream and getReader

HttpUtils.getRequestURL
public static StringBuffer getRequestURL(HttpServletRequest request);
Appendix G, API Clarifications 73

HttpSession.setMaxInactiveInterval
This method reconstructs the URL used by the client to make the given request
on the server. This method accounts for difference in scheme (such as http,
https) and ports, but does not attempt to include query parameters.

This method returns a StringBuffer instead of a String so that the URL can be
modified efficiently by the servlet.

Clarification

To determine the server name part of the requested URL, iPlanet Web Server
first tries to use the “Host” header and then looks at the value of ServerName in
magnus.conf. By default, the server name is the machine name, but this value is
editable during iPlanet Web Server 4.1 installation. If the server name has been
changed, HttpUtils.getRequestURL might not return the host name that is
needed to reconstruct the request.

For example, suppose the request is http://abc/index.html. However, the
server name has been changed to xyz. In this case, HttpUtils.getRequestURL
might return http://xyz/index.html, which is not the original URL that was
requested.

HttpSession.setMaxInactiveInterval
public void setMaxInactiveInterval(int interval);

Sets the amount of time that a session can be inactive before the servlet engine
is allowed to expire it.

Clarification

It is not possible to set the maximum inactive interval so that the session never
times out. The session always has a timeout value.

If you pass a negative or zero value, the session expires immediately.
74 Programmer’s Guide to Servlets

GenericServlet.getInitParameter and
GenericServlet.getInitParameter and
getInitParameterNames

public String getInitParameter(String name);

This method returns a String containing the value of the servlet’s named
initialization parameter, or null if this parameter does not exist.

public Enumeration getInitParameterNames();

This method returns an enumeration of String objects containing the names of
the initialization parameters for the calling servlet. If the calling servlet has no
initialization parameters, getInitParameterNames returns an empty
enumeration.

Clarification

For servlets running on iPlanet Web Server 4.1, the methods getInitParameter
and getInitParameterNames for the class ServletConfig only work for servlets
that are invoked through virtual path translations. The same restriction applies
to the convenience methods of the same names in the class GenericServlet,
which invoke the corresponding methods on ServletConfig.

For information about setting virtual path translations, see the section
“Specifying Servlet Virtual Paths” on page 19.

These methods do not work if the servlet is invoked by a client request that
specifies a servlet in a registered servlet directory rather than using a virtual
path translation to access the servlet.

ServletContext.getAttributeNames
public java.util.Enumeration getAttributeNames()

This method returns an enumeration containing the attribute names available
within the servlet’s context.
Appendix G, API Clarifications 75

ServletContext.getContext
Clarification

If you are using MMapSessions, iPlanet Web Server truncates names retrieved by
ServletContext.getAttributeNames to 128 characters.

ServletContext.getContext
public ServletContext getContext(String uripath);

Returns the servlet context object that contains servlets and resources for a
particular URI path, or null if a context cannot be provided for the path.

Clarification

This method only works if both the following conditions are true:

• The servlet whose context is being obtained (that is, the servlet pointed to
by uripath) has been configured either through the Servlets>Configure
Servlet attributes property of the Server Manager interface or by editing
servlets.properties.

• The servlet whose context is being obtained has been loaded.

iPlanet Web Server 4.1 does not load a servlet specified by a URI when
getContext is called from another servlet to get the context of an unloaded
servlet.

ServletRequest.getAttribute
public java.lang.Object getAttribute(java.lang.String name)

Returns the value of the named attribute as an object, or returns null if no
attribute of the given name exists.

Clarification

ServletRequest.getAttribute returns a CGI variable if it exists. However, the
getAttributeNames method does not show these variables within its
enumeration.
76 Programmer’s Guide to Servlets

RequestDispatcher.forward and include
RequestDispatcher.forward and include
public void forward(ServletRequest request, ServletResponse response)
throws ServletException, IOException;

Used for forwarding a request from this servlet to another resource on the web
server. This method is useful when one servlet does preliminary processing of a
request and wants to let another object generate the response.

The request object passed to the target object will have its request URL path
and other path parameters adjusted to reflect the target URL path of the target
object.

You cannot use this method if a ServletOutputStream object or PrintWriter
object has been obtained from the response. In that case, the method throws an
IllegalStateException.

public void include(ServletRequest request, ServletResponse response)
throws ServletException, IOException;

Used for including the content generated by another server resource in the
body of a response. In essence, this method enables programmatic server-side
includes. The request object passed to the target object reflects the request URL
path and path info of the calling request. The response object only has access
to the calling servlet’s ServletOutputStream object or PrintWriter object.

An included servlet cannot set headers. If the included servlet calls a method
that needs to set headers (such as cookies), the method is not guaranteed to
work. As a servlet developer, you must ensure that any methods that might
need direct access to headers are properly resolved. To ensure that a session
works correctly, start the session outside the included servlet, even if you use
session tracking.

Clarification

In iPlanet Web Server 4.1, the dispatcher.forward method may or may not
throw an IllegalStateException when either Writer or OutputStream have
been obtained. This behavior follows the 2.2 draft and is needed for JSP error
page handling. It throws the exception only if the actual data has been flushed
out and sent to the client. Otherwise, the data pending in the buffer is simply
discarded.
Appendix G, API Clarifications 77

Request.getInputStream and getReader
The forward and include methods may throw a ServletException if the target
URI is identified as an unsafe URI (that is, it includes insecure path characters
such as //, /./, /../ and/., /.. (and also ./ for NT) at the end of the URI.

Request.getInputStream and getReader
There are two ways for a servlet to read the raw data posted by a client:

• by obtaining the InputStream through the request.InputStream method, an
older method.

• by obtaining a BufferedRead through the request.getReader method, a
method in use since 2.0.

Clarification

A servlet hangs if it attempts to use an InputStream to read more data than is
physically available. (To find how much data is available, use
request.getContentLength.) However, if the servlet reads data using a
BufferedReader returned from a call to getReader, the allowed content length is
automatically taken into account.

You can also set the inputStreamLengthCheck parameter to true in the
contexts.properties file to prevent this problem.
78 Programmer’s Guide to Servlets

Index

A
about this book 7

accessing
JSP 14
request object in JSP 35
servlets 13

accessTimeColumn
parameter for JdbcSessionManager 50

activating
JSP 15
servlets 15

API
clarifications 73

API reference
JavaBeans 12
JSP 12
servlets 10

B
beans 11

example of accessing from JSP 37
examples directory 29

beans.10
examples directory 29

bookstore
examples directory 29

C
cache_dir

optional parameter to NSServletEarlyInit 56

cache directories 24

CatchSignals
optional parameter to NSServletLateInit 56

CGI variable
returning in a servlet 76

clarifications
of API 73

ClassCache 24

classpath
for JDK 23
for JVM 26
for servlets 18
JVM parameter 26

compiler
JVM parameter 26

compiling
servlets 10

configuring
global servlet attributes 16
individual servlets 18
JRE/JDK paths 22
JVM 25, 65

context
optional parameter to NSServletService 56

contexts 22, 61

contexts.properties 56, 61

cookies method 77

D
debugging

enabling 26
JSPs 68
servlets remotely 67

deletePool
parameter for JdbcSessionManager 51

deleting
version files 24
Index 79

directives
for enabling servlets 55

directories
for servlets 16

doGet method 31, 32

E
enable class GC

JVM parameter 26

enable debug
JVM parameter 26

enabling
JdbcSessionManager 51
JDK or JRE 22
JSP 14
MMapSessionManager 48
servlets 15
session managers 45
SimpleSessionManager 46

examples
form that invokes JSP 38
JSP 35
JSP accessing beans 37
location in the build 29
servlets 30
servlet that parses input parameters 32
shipped in the build 29
simple servlet 31
virtual servlet path 20

F
file extensions

.class 17

.jsp 14, 57

forms
example of invoking JSP 38

forward 77

G
garbage collection

enabling 26

GenericServlet.getInitParameter 75

getAttribute 76

getAttributeNames 76

getContext 76

getInitParameter 75

getInitParameterNames 75

global servlet attributes
configuring 16

H
HttpServlet 31, 32

HttpServletRequest
more info 53

HttpSession
more info 53

HttpSession.setMaxInactiveInterval 74

HttpUtils.getRequestURL 73

I
include 77

input parameters
accessing in JSP 39

insertPool
parameter for JdbcSessionManager 51

installing
JRE or JDK 12
servlets 13

Intuitve Systems
web site 71

J
jars

classpath 26

JavaBeans 12
specifying classpath 26

Java Development Kit
see JDK

Java Runtime Environment
80 Programmer’s Guide to Servlets

see JRE

JavaServer Pages
see JSP

Java Servlet API 10

Java Virtual Machine
see JVM

Java Virtual Machine Specification 66

JdbcSession
source code 52

JdbcSessionManager 49
enabling 51
source code 52

JDK 12
downloading 13
enabling 22
installing 12
setting path 22
versions 23

JIT 26

JRE 12
enabling 22
installing 12
setting path 22

JSP 11
accessing beans example 37
accessing input parameters 39
accessing Java 11
accessing request object 35
activating 15
API reference 12
cache directory 24
debugging 68
enabling 14
example of invoking from forms 38
examples 35
serving 13
specifying classpath for beans 26
using 9
using Server Manager interface 14

JSP.092
examples directory 30

JSP.10

examples directory 30

JSP tags
useBean 39

just-in-time compiler 26

JVM
catching thread dumps 56
configuration 65
configuring 25
more info 66
specification 66

jvm12.conf 25, 65

JVM parameters
classpath 26
compiler 26
enable class GC 26
enable debug 26
maximum heap size 26
minimum heap size 26
option 26
OPTITDIR 26
profiler 26
verbose mode 26

L
lookupPool

parameter for JdbcSessionManager 51

M
magnus-internal/jsp 57

make
examples directory 30

maximum heap size
JVM parameter 26

maxSessions
parameter for MMapSessionManager 48
parameter for SimpleSessionManager 46

maxValuesPerSession
parameter for MMapSessionManager 48

maxValuesSize
parameter for MMapSessionManager 48
Index 81

minimum heap size
JVM parameter 26

MMapSessionManager 25, 48
enabling 48

multiple servlet directories 17

multi-process mode
for more info 45

N
NSES_JDK 24

NSES_JRE 24

NSHttpSessionManager 47, 52

NSServletEarlyInit 55

NSServletLateInit 55

NSServletLayer.jar 47, 52

NSServletService 55, 56

O
obj.conf 55

Optimizeit!
purchasing 71

option
JVM parameter 26

OPTITDIR
JVM parameter 26

P
password

parameter for JdbcSessionManager 50

path
to JRE or JDK 13, 22

path translations
specifying 19

persistent session manger 48, 49

preface 7

process mode
for more info 45

profiler

JVM parameter 26

profiling
servlets remotely 71

provider
parameter for JdbcSessionManager 50

R
reaperActive

parameter for JdbcSessionManager 50

reaper method
MMapSessionManager 48
SimpleSessionManager 46

reapInterval
parameter for MMapSessionManager 48
parameter for SimpleSessionManager 46

registered servlet directories 16

registering
individual servlets 18
servlet directories 16

reloading
servlets 16

reload interval 16

remote profiling 71

remote servlet debugging 67

Request.getInputStream 78

Request.getReader 78

RequestDispatcher.forward 77

RequestDispatcher.include 77

request object
accessing in JSP 35

rules.properties 60

S
Server Manager interface

for managing servlets and JSP 14

serving
servlets and JSP 13

servlet
optional parameter to NSServletService 56
82 Programmer’s Guide to Servlets

Servlet Args 18

ServletByExt 15

Servlet Classpath 18

Servlet Code (class name) 18

ServletContext.getAttributeNames 75

ServletContext.getContext 76

servlet directories 16
default directory 16

Servlet Name 18

ServletRequest.getAttribute 76

ServletRequest.getAttributeNames 76

servlets 10
accessing from clients 13
accessing session data 53
activating 15
API clarifications 73
API reference 10
cache directories 24
compiling 10
configuring global attributes 16
configuring individual servlets 18
debugging remotely 67
example of accessing 17
examples 30
parsing input parameters 32
reloading 16
remote profiling 71
serving 13
session managers 43
sessions 43
specifying virtual paths 19
using 9
using Server Manager interface 14
virtual path translation 14

servlets.jar 10

servlets.properties 56, 59

Servlets API Class Reference 73

SessionData 24

session data
accessing 53

sessionIdColumn

parameter for JdbcSessionManager 50

Session Manager 16

Session Manager Args 16

session managers 43
JdbcSessionManager 49
MMapSessionManager 48
persistent 48, 49
SimpleSessionManager 46
specifying 45

sessions 43
accessing from servlets 53
examples directory 30
overview 43

setMaxInactiveInterval 74

simple servlet example 31

SimpleSession
source code 47

SimpleSessionManager 46
enabling 46
source code 47

single process mode
for more info 45

snoop.jsp 36

source code
JdbcSession 52
JdbcSessionManager 52
SimpleSession 47
SimpleSessionManager 47

specifying
JDK or JRE 13
servlet directories 16
session managers 45
virtual servlet paths 19

Startup Servlets 16

T
table

parameter for JdbcSessionManager 50

thread pools 15, 28, 66

timeOut
Index 83

parameter for JdbcSessionManager 50
parameter for MMapSessionManager 48
parameter for SimpleSessionManager 46

tools
examples directory 30

U
unsafe URIs 78

updatePool
parameter for JdbcSessionManager 51

url
parameter for JdbcSessionManager 50

useBean
JSP tag 39

username
parameter for JdbcSessionManager 50

using
servlets and JSP 9

V
valueColumn

parameter for JdbcSessionManager 50

verbose mode
JVM parameter 26

version files 25
deleting 24

virtual paths
example 20
specifying 19
84 Programmer’s Guide to Servlets

	About This Book
	Using Servlets and JavaServer Pages
	Servlets
	JavaServer Pages
	What Does the Server Need to Run Servlets and JSP?
	Serving Servlets and JSP
	Using the Server Manager Interface
	Activating Servlets and JSP
	Configuring Global Servlet Attributes
	Registering Servlet Directories
	Registering Individual Servlets
	Specifying Servlet Virtual Paths
	Specifying Servlet Contexts
	Configuring JRE/JDK Paths
	Deleting Version Files
	Configuring JVM
	Running 0.92 JSP
	Maximizing Servlet Performance

	Servlet and JSP Examples
	Examples Shipped with iPlanet Web Server 4.1
	Servlet Examples
	A Simple Servlet Example
	Example of a Servlet that Counts Visits

	JSP Examples
	JSP that Accesses the Request Object
	JSP that Responds to a Form and Uses Java Beans

	Session Managers
	Session Overview
	Specifying a Session Manager
	SimpleSessionManager
	Parameters
	Enabling SimpleSessionManager
	Source Code for SimpleSessionManager

	MMapSessionManager
	Parameters
	Enabling MMapSessionManager

	JdbcSessionManager
	Parameters
	Enabling JdbcSessionManager
	Source Code for JDBCSessionManager

	How Do Servlets Access Session Data?

	Servlet Settings in obj.conf
	Directives for Enabling Servlets
	Directives for Registered Servlet Directories
	JSP

	Properties Files
	servlets.properties
	rules.properties
	contexts.properties

	JVM Configuration
	Debugging Servlets and JSPs
	Servlet Debugging
	JSP Debugging

	Remote Servlet Profiling
	API Clarifications
	HttpUtils.getRequestURL
	HttpSession.setMaxInactiveInterval
	GenericServlet.getInitParameter and getInitParameterNames
	ServletContext.getAttributeNames
	ServletContext.getContext
	ServletRequest.getAttribute
	RequestDispatcher.forward and include
	Request.getInputStream and getReader

	Index

